shader_type canvas_item; // Required only because we use all 4 channels to encode floats into RGBA8 render_mode blend_disabled; #include "res://addons/zylann.hterrain/shaders/include/heightmap.gdshaderinc" uniform vec2 u_offset; uniform float u_scale = 0.02; uniform float u_base_height = 0.0; uniform float u_height_range = 100.0; uniform int u_seed; uniform int u_octaves = 5; uniform float u_roughness = 0.5; uniform float u_curve = 1.0; uniform float u_terrain_size = 513.0; uniform float u_tile_size = 513.0; uniform sampler2D u_additive_heightmap; uniform float u_additive_heightmap_factor = 0.0; uniform vec2 u_uv_offset; uniform vec2 u_uv_scale = vec2(1.0, 1.0); uniform float u_island_weight = 0.0; // 0: smooth transition, 1: sharp transition uniform float u_island_sharpness = 0.0; // 0: edge is min height (island), 1: edge is max height (canyon) uniform float u_island_height_ratio = 0.0; // 0: round, 1: square uniform float u_island_shape = 0.0; //////////////////////////////////////////////////////////////////////////////// // Perlin noise source: // https://github.com/curly-brace/Godot-3.0-Noise-Shaders // // GLSL textureless classic 2D noise \"cnoise\", // with an RSL-style periodic variant \"pnoise\". // Author: Stefan Gustavson (stefan.gustavson@liu.se) // Version: 2011-08-22 // // Many thanks to Ian McEwan of Ashima Arts for the // ideas for permutation and gradient selection. // // Copyright (c) 2011 Stefan Gustavson. All rights reserved. // Distributed under the MIT license. See LICENSE file. // https://github.com/stegu/webgl-noise // vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x * 34.0) + 1.0) * x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } vec2 fade(vec2 t) { return t * t * t * (t * (t * 6.0 - 15.0) + 10.0); } // Classic Perlin noise float cnoise(vec2 P) { vec4 Pi = floor(vec4(P, P)) + vec4(0.0, 0.0, 1.0, 1.0); vec4 Pf = fract(vec4(P, P)) - vec4(0.0, 0.0, 1.0, 1.0); Pi = mod289(Pi); // To avoid truncation effects in permutation vec4 ix = Pi.xzxz; vec4 iy = Pi.yyww; vec4 fx = Pf.xzxz; vec4 fy = Pf.yyww; vec4 i = permute(permute(ix) + iy); vec4 gx = fract(i * (1.0 / 41.0)) * 2.0 - 1.0 ; vec4 gy = abs(gx) - 0.5 ; vec4 tx = floor(gx + 0.5); gx = gx - tx; vec2 g00 = vec2(gx.x,gy.x); vec2 g10 = vec2(gx.y,gy.y); vec2 g01 = vec2(gx.z,gy.z); vec2 g11 = vec2(gx.w,gy.w); vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); g00 *= norm.x; g01 *= norm.y; g10 *= norm.z; g11 *= norm.w; float n00 = dot(g00, vec2(fx.x, fy.x)); float n10 = dot(g10, vec2(fx.y, fy.y)); float n01 = dot(g01, vec2(fx.z, fy.z)); float n11 = dot(g11, vec2(fx.w, fy.w)); vec2 fade_xy = fade(Pf.xy); vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x); float n_xy = mix(n_x.x, n_x.y, fade_xy.y); return 2.3 * n_xy; } //////////////////////////////////////////////////////////////////////////////// float get_fractal_noise(vec2 uv) { float scale = 1.0; float sum = 0.0; float amp = 0.0; int octaves = u_octaves; float p = 1.0; uv.x += float(u_seed) * 61.0; for (int i = 0; i < octaves; ++i) { sum += p * cnoise(uv * scale); amp += p; scale *= 2.0; p *= u_roughness; } float gs = sum / amp; return gs; } // x is a ratio in 0..1 float get_island_curve(float x) { return smoothstep(min(0.999, u_island_sharpness), 1.0, x); // float exponent = 1.0 + 10.0 * u_island_sharpness; // return pow(abs(x), exponent); } float smooth_union(float a, float b, float k) { float h = clamp(0.5 + 0.5 * (b - a) / k, 0.0, 1.0); return mix(b, a, h) - k * h * (1.0 - h); } float squareish_distance(vec2 a, vec2 b, float r, float s) { vec2 v = b - a; // TODO This is brute force but this is the first attempt that gave me a "rounded square" distance, // where the "roundings" remained constant over distance (not the case with standard box SDF) float da = -smooth_union(v.x+s, v.y+s, r)+s; float db = -smooth_union(s-v.x, s-v.y, r)+s; float dc = -smooth_union(s-v.x, v.y+s, r)+s; float dd = -smooth_union(v.x+s, s-v.y, r)+s; return max(max(da, db), max(dc, dd)); } // This is too sharp //float squareish_distance(vec2 a, vec2 b) { // vec2 v = b - a; // // Manhattan distance would produce a "diamond-shaped distance". // // This gives "square-shaped" distance. // return max(abs(v.x), abs(v.y)); //} float get_island_distance(vec2 pos, vec2 center, float terrain_size) { float rd = distance(pos, center); float sd = squareish_distance(pos, center, terrain_size * 0.1, terrain_size); return mix(rd, sd, u_island_shape); } // pos is in terrain space float get_height(vec2 pos) { float h = 0.0; { // Noise (0..1) // Offset and scale for the noise itself vec2 uv_noise = (pos / u_terrain_size + u_offset) * u_scale; h = 0.5 + 0.5 * get_fractal_noise(uv_noise); } // Curve { h = pow(h, u_curve); } // Island { float terrain_size = u_terrain_size; vec2 island_center = vec2(0.5 * terrain_size); float island_height_ratio = 0.5 + 0.5 * u_island_height_ratio; float island_distance = get_island_distance(pos, island_center, terrain_size); float distance_ratio = clamp(island_distance / (0.5 * terrain_size), 0.0, 1.0); float island_ratio = u_island_weight * get_island_curve(distance_ratio); h = mix(h, island_height_ratio, island_ratio); } // Height remapping { h = u_base_height + h * u_height_range; } // Additive heightmap { vec2 uv = pos / u_terrain_size; float ah = sample_heightmap(u_additive_heightmap, uv); h += u_additive_heightmap_factor * ah; } return h; } void fragment() { // Handle screen padding: transform UV back into generation space. // This is in tile space actually...? it spans 1 unit across the viewport, // and starts from 0 when tile (0,0) is generated. // Maybe we could change this into world units instead? vec2 uv_tile = (SCREEN_UV + u_uv_offset) * u_uv_scale; float h = get_height(uv_tile * u_tile_size); COLOR = encode_height_to_viewport(h); }