shader_type spatial; // WIP // This shader uses a texture array with multiple splatmaps, allowing up to 16 textures. // Only the 4 textures having highest blending weight are sampled. #include "res://addons/zylann.hterrain/shaders/include/heightmap.gdshaderinc" uniform sampler2D u_terrain_heightmap; uniform sampler2D u_terrain_normalmap; // I had to remove source_color` from colormap in Godot 3 because it makes sRGB conversion kick in, // which snowballs to black when doing GPU painting on that texture... uniform sampler2D u_terrain_colormap; uniform sampler2D u_terrain_splatmap; uniform sampler2D u_terrain_splatmap_1; uniform sampler2D u_terrain_splatmap_2; uniform sampler2D u_terrain_splatmap_3; uniform sampler2D u_terrain_globalmap : source_color; uniform mat4 u_terrain_inverse_transform; uniform mat3 u_terrain_normal_basis; uniform sampler2DArray u_ground_albedo_bump_array : source_color; uniform float u_ground_uv_scale = 20.0; uniform bool u_depth_blending = true; uniform float u_globalmap_blend_start; uniform float u_globalmap_blend_distance; varying float v_hole; varying vec3 v_tint; varying vec2 v_terrain_uv; varying vec3 v_ground_uv; varying float v_distance_to_camera; // TODO Can't put this in a constant: https://github.com/godotengine/godot/issues/44145 //const int TEXTURE_COUNT = 16; vec3 unpack_normal(vec4 rgba) { vec3 n = rgba.xzy * 2.0 - vec3(1.0); // Had to negate Z because it comes from Y in the normal map, // and OpenGL-style normal maps are Y-up. n.z *= -1.0; return n; } // Blends weights according to the bump of detail textures, // so for example it allows to have sand fill the gaps between pebbles vec4 get_depth_blended_weights(vec4 splat, vec4 bumps) { float dh = 0.2; vec4 h = bumps + splat; // TODO Keep improving multilayer blending, there are still some edge cases... // Mitigation: nullify layers with near-zero splat h *= smoothstep(0, 0.05, splat); vec4 d = h + dh; d.r -= max(h.g, max(h.b, h.a)); d.g -= max(h.r, max(h.b, h.a)); d.b -= max(h.g, max(h.r, h.a)); d.a -= max(h.g, max(h.b, h.r)); return clamp(d, 0, 1); } vec3 get_triplanar_blend(vec3 world_normal) { vec3 blending = abs(world_normal); blending = normalize(max(blending, vec3(0.00001))); // Force weights to sum to 1.0 float b = blending.x + blending.y + blending.z; return blending / vec3(b, b, b); } vec4 texture_triplanar(sampler2D tex, vec3 world_pos, vec3 blend) { vec4 xaxis = texture(tex, world_pos.yz); vec4 yaxis = texture(tex, world_pos.xz); vec4 zaxis = texture(tex, world_pos.xy); // blend the results of the 3 planar projections. return xaxis * blend.x + yaxis * blend.y + zaxis * blend.z; } void get_splat_weights(vec2 uv, out vec4 out_high_indices, out vec4 out_high_weights) { vec4 ew0 = texture(u_terrain_splatmap, uv); vec4 ew1 = texture(u_terrain_splatmap_1, uv); vec4 ew2 = texture(u_terrain_splatmap_2, uv); vec4 ew3 = texture(u_terrain_splatmap_3, uv); float weights[16] = { ew0.r, ew0.g, ew0.b, ew0.a, ew1.r, ew1.g, ew1.b, ew1.a, ew2.r, ew2.g, ew2.b, ew2.a, ew3.r, ew3.g, ew3.b, ew3.a }; // float weights_sum = 0.0; // for (int i = 0; i < 16; ++i) { // weights_sum += weights[i]; // } // for (int i = 0; i < 16; ++i) { // weights_sum /= weights_sum; // } // weights_sum=1.1; // Now we have to pick the 4 highest weights and use them to blend textures. // Using arrays because Godot's shader version doesn't support dynamic indexing of vectors // TODO We should not need to initialize, but apparently we don't always find 4 weights int high_indices_array[4] = {0, 0, 0, 0}; float high_weights_array[4] = {0.0, 0.0, 0.0, 0.0}; int count = 0; // We know weights are supposed to be normalized. // That means the highest value of the pivot above which we can find 4 results // is 1.0 / 4.0. However that would mean exactly 4 textures have exactly that weight, // which is very unlikely. If we consider 1.0 / 5.0, we are a bit more likely to find // 4 results, and finding 5 results remains almost impossible. float pivot = /*weights_sum*/1.0 / 5.0; for (int i = 0; i < 16; ++i) { if (weights[i] > pivot) { high_weights_array[count] = weights[i]; high_indices_array[count] = i; weights[i] = 0.0; ++count; } } while (count < 4 && pivot > 0.0) { float max_weight = 0.0; int max_index = 0; for (int i = 0; i < 16; ++i) { if (/*weights[i] <= pivot && */weights[i] > max_weight) { max_weight = weights[i]; max_index = i; weights[i] = 0.0; } } high_indices_array[count] = max_index; high_weights_array[count] = max_weight; ++count; pivot = max_weight; } out_high_weights = vec4( high_weights_array[0], high_weights_array[1], high_weights_array[2], high_weights_array[3]); out_high_indices = vec4( float(high_indices_array[0]), float(high_indices_array[1]), float(high_indices_array[2]), float(high_indices_array[3])); out_high_weights /= out_high_weights.r + out_high_weights.g + out_high_weights.b + out_high_weights.a; } void vertex() { vec4 wpos = MODEL_MATRIX * vec4(VERTEX, 1); vec2 cell_coords = (u_terrain_inverse_transform * wpos).xz; // Must add a half-offset so that we sample the center of pixels, // otherwise bilinear filtering of the textures will give us mixed results (#183) cell_coords += vec2(0.5); // Normalized UV UV = cell_coords / vec2(textureSize(u_terrain_heightmap, 0)); // Height displacement float h = sample_heightmap(u_terrain_heightmap, UV); VERTEX.y = h; wpos.y = h; vec3 base_ground_uv = vec3(cell_coords.x, h * MODEL_MATRIX[1][1], cell_coords.y); v_ground_uv = base_ground_uv / u_ground_uv_scale; // Putting this in vertex saves a fetch from the fragment shader, // which is good for performance at a negligible quality cost, // provided that geometry is a regular grid that decimates with LOD. // (downside is LOD will also decimate it, but it's not bad overall) vec4 tint = texture(u_terrain_colormap, UV); v_hole = tint.a; v_tint = tint.rgb; // Need to use u_terrain_normal_basis to handle scaling. NORMAL = u_terrain_normal_basis * unpack_normal(texture(u_terrain_normalmap, UV)); v_distance_to_camera = distance(wpos.xyz, CAMERA_POSITION_WORLD); } void fragment() { if (v_hole < 0.5) { // TODO Add option to use vertex discarding instead, using NaNs discard; } vec3 terrain_normal_world = u_terrain_normal_basis * unpack_normal(texture(u_terrain_normalmap, UV)); terrain_normal_world = normalize(terrain_normal_world); float globalmap_factor = clamp((v_distance_to_camera - u_globalmap_blend_start) * u_globalmap_blend_distance, 0.0, 1.0); globalmap_factor *= globalmap_factor; // slower start, faster transition but far away vec3 global_albedo = texture(u_terrain_globalmap, UV).rgb; ALBEDO = global_albedo; // Doing this branch allows to spare a bunch of texture fetches for distant pixels. // Eventually, there could be a split between near and far shaders in the future, // if relevant on high-end GPUs if (globalmap_factor < 1.0) { vec4 high_indices; vec4 high_weights; get_splat_weights(UV, high_indices, high_weights); vec4 ab0 = texture(u_ground_albedo_bump_array, vec3(v_ground_uv.xz, high_indices.x)); vec4 ab1 = texture(u_ground_albedo_bump_array, vec3(v_ground_uv.xz, high_indices.y)); vec4 ab2 = texture(u_ground_albedo_bump_array, vec3(v_ground_uv.xz, high_indices.z)); vec4 ab3 = texture(u_ground_albedo_bump_array, vec3(v_ground_uv.xz, high_indices.w)); vec3 col0 = ab0.rgb * v_tint; vec3 col1 = ab1.rgb * v_tint; vec3 col2 = ab2.rgb * v_tint; vec3 col3 = ab3.rgb * v_tint; vec4 w; // TODO An #ifdef macro would be nice! Or copy/paste everything in a different shader... if (u_depth_blending) { w = get_depth_blended_weights(high_weights, vec4(ab0.a, ab1.a, ab2.a, ab3.a)); } else { w = high_weights; } float w_sum = (w.r + w.g + w.b + w.a); ALBEDO = ( w.r * col0.rgb + w.g * col1.rgb + w.b * col2.rgb + w.a * col3.rgb) / w_sum; ALBEDO = mix(ALBEDO, global_albedo, globalmap_factor); ROUGHNESS = mix(ROUGHNESS, 1.0, globalmap_factor); // if(count < 3) { // ALBEDO = vec3(1.0, 0.0, 0.0); // } // Show splatmap weights //ALBEDO = w.rgb; } // Highlight all pixels undergoing no splatmap at all // else { // ALBEDO = vec3(1.0, 0.0, 0.0); // } NORMAL = (VIEW_MATRIX * (vec4(terrain_normal_world, 0.0))).xyz; }