khanat-opennel-code/code/nel/src/ligo/zone_template.cpp

784 lines
18 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "stdligo.h"
#include "zone_template.h"
#include "ligo_error.h"
#include "nel/ligo/ligo_config.h"
#include "nel/misc/stream.h"
#include "nel/misc/matrix.h"
using namespace std;
using namespace NLMISC;
namespace NLLIGO
{
const uint SnappedXFlag = 1;
const uint SnappedYFlag = 2;
// ***************************************************************************
inline void CZoneTemplate::snap (float& value, float snap)
{
// Snap it
value = snap * (float) floor ( (value / snap) + 0.5f );
}
// ***************************************************************************
inline bool CZoneTemplate::snapOnGrid (float& value, float resolution, float snap)
{
// Calc the floor
float _floor = (float) ( resolution * floor (value / resolution) );
nlassert (_floor<=value);
// Calc the remainder
float remainder = value - _floor;
//nlassert ( (remainder>=0) && (remainder<resolution) );
// Check the snape
if ( remainder <= snap )
{
// Flag it
value = _floor;
// Floor is good
return true;
}
else if ( (resolution - remainder) <= snap )
{
// Flag it
value = _floor + resolution;
// Floor + resolution is good
return true;
}
return false;
}
// ***************************************************************************
inline bool CZoneTemplate::isSnapedOnGrid (float value, float resolution, float snap)
{
// Snapped
float snapped = value;
return snapOnGrid (snapped, resolution, snap);
}
// ***************************************************************************
inline sint32 CZoneTemplate::getSnappedIndex (float value, float resolution, float snap)
{
// Snapped
float snapped = value;
// This value must be snapped
nlverify (snapOnGrid (snapped, resolution, snap));
// Return the index
return (sint32) floor ( (snapped / resolution) + 0.5f );
}
// ***************************************************************************
bool CZoneTemplate::build (const std::vector<NLMISC::CVector> &vertices, const std::vector< std::pair<uint, uint> > &indexes, const CLigoConfig &config, CLigoError &errors)
{
// Clear the error message
errors.clear ();
// Make an boundary flag array
vector<uint> boundaryFlags;
// Vertices count
uint vertexCount = (uint)vertices.size();
// Resize the array
boundaryFlags.resize (vertexCount, 0);
// *** Build the flag array and the snapped vertex array
// For each vertices
uint vertex;
for (vertex = 0; vertex < vertexCount; vertex++)
{
// Snap the point on the X grid
if (isSnapedOnGrid (vertices[vertex].x, config.CellSize, config.Snap))
// Flag on X
boundaryFlags[vertex]|=SnappedXFlag;
// Snap the point on the Y grid
if (isSnapedOnGrid (vertices[vertex].y, config.CellSize, config.Snap))
// Flag on Y
boundaryFlags[vertex]|=SnappedYFlag;
}
// *** Build the edge set
multimap<uint, uint> edgePair;
multimap<uint, uint> edgePairReverse;
// Index count
uint edgeCount = (uint)indexes.size();
// For each vertices
uint edge;
for (edge = 0; edge < edgeCount; edge++)
{
// Ref on the pair
const pair<uint, uint> &theEdge = indexes[edge];
// Vertex snapped ?
if ( boundaryFlags[theEdge.first] && boundaryFlags[theEdge.second] )
{
// Common coordinates
uint common = boundaryFlags[theEdge.first] & boundaryFlags[theEdge.second];
// Snapped on the same kind of coordinates ?
if ( common )
{
// Keep this edge ?
bool keep = false;
// Snapped both on X ?
if ( common & SnappedXFlag )
{
// Keep it
keep = true;
}
// Snapped both on X ?
if ( common & SnappedYFlag )
{
// Keep it
keep = true;
}
// Keep this edge ?
if (keep)
{
// Already inserted ?
bool first = edgePair.find (theEdge.first) != edgePair.end();
bool second = edgePairReverse.find (theEdge.second) != edgePairReverse.end();
// First already inserted
if (first || second)
{
// Error, two times the same vertex
errors.MainError = CLigoError::VertexAlreadyUsed;
if (first)
errors.pushVertexError (CLigoError::VertexAlreadyUsed, theEdge.first, 0);
if (second)
errors.pushVertexError (CLigoError::VertexAlreadyUsed, theEdge.second, 0);
return false;
}
if ((!first) && (!second))
{
// Add to the map
edgePair.insert (map<uint, uint>::value_type(theEdge.first, theEdge.second));
edgePairReverse.insert (map<uint, uint>::value_type(theEdge.second, theEdge.first));
}
}
}
}
}
// *** Build the list of non included vertices
// For each vertices
for (uint i=0; i<vertexCount; i++)
{
// Vertex is inserted ?
if (edgePair.find (i) == edgePair.end())
{
// No, add an error message
errors.pushVertexError (CLigoError::NotInserted, i, 0);
}
else
{
// No, add an error message
errors.pushVertexError (CLigoError::Inserted, i, 0);
}
}
// *** Build the linked list
// No vertices found ?
if (edgePair.begin() == edgePair.end())
{
// Error message
errors.MainError = CLigoError::NoEdgeVertices;
return false;
}
// Build the linked segments
list<list<uint> > segmentList;
multimap<uint, uint>::iterator currentVert = edgePair.begin();
// For each remaining segment
while (currentVert != edgePair.end())
{
// Get next vert
uint first = currentVert->first;
uint next = currentVert->second;
// New list
segmentList.push_front (list<uint>());
list<uint> &listVert = *segmentList.begin();
// Put the first vertices of the edge list
listVert.push_back (first);
listVert.push_back (next);
// Erase it and
edgePair.erase (currentVert);
// Erase the reverse one
currentVert = edgePairReverse.find (next);
nlassert (currentVert != edgePairReverse.end());
edgePairReverse.erase (currentVert);
// Look forward
currentVert = edgePair.find (next);
while (currentVert != edgePair.end())
{
// Backup
//uint current = currentVert->first;
next = currentVert->second;
// Push the next vertex
listVert.push_back (next);
// Erase it and
edgePair.erase (currentVert);
// Erase the reverse one
currentVert = edgePairReverse.find (next);
nlassert (currentVert != edgePairReverse.end());
edgePairReverse.erase (currentVert);
// Look forward
currentVert = edgePair.find (next);
}
// Edgelist ok ?
if (next != first)
{
// No, look backward
currentVert = edgePairReverse.find (first);
while (currentVert != edgePairReverse.end())
{
// Backup
uint current = currentVert->second;
next = currentVert->first;
// Push the next vertex
listVert.push_front (current);
// Erase it
edgePairReverse.erase (currentVert);
// Erase the reverse one
currentVert = edgePair.find (current);
nlassert (currentVert != edgePair.end());
edgePair.erase (currentVert);
// Look forward
currentVert = edgePairReverse.find (current);
}
}
// Next edge list
currentVert = edgePair.begin();
}
// ** Error traitment
// Ok
bool ok = true;
// Edge index
uint edgeIndex = 0;
// List ok ?
list<list<uint> >::iterator iteList = segmentList.begin ();
while (iteList != segmentList.end())
{
// Only one list
list<uint> &listVert = *iteList;
// First and last edge
uint first = *listVert.begin();
uint last = *(--listVert.end());
// Opened edge ?
if ( first != last )
{
// Opened edge
errors.pushVertexError (CLigoError::OpenedEdge, first, edgeIndex);
errors.pushVertexError (CLigoError::OpenedEdge, last, edgeIndex);
// Main error
errors.MainError = CLigoError::OpenedEdge;
// Not ko
ok = false;
}
// Next edge list
edgeIndex++;
iteList++;
}
if (segmentList.size () > 1)
{
// Main error
errors.MainError = CLigoError::MultipleEdge;
// Not ok
ok = false;
}
// Ok ?
if (ok)
{
// Only one list
list<uint> &listVert = *segmentList.begin ();
// Test vertex enchainement
list<uint>::iterator vertIte = listVert.begin();
// Current vertex id
uint previous = *(--listVert.end());
vertIte++;
// Error vertex set
set<uint> errored;
// For each vertices
while (vertIte != listVert.end ())
{
// Vertex id
uint next = *vertIte;
// Common flags
uint commonFlags = boundaryFlags[previous]&boundaryFlags[next];
// The both on X ?
if ( commonFlags & SnappedXFlag )
{
// Get x index
sint32 prevIndex = getSnappedIndex (vertices[previous].x, config.CellSize, config.Snap);
sint32 nextIndex = getSnappedIndex (vertices[next].x, config.CellSize, config.Snap);
// Not the same ?
if (prevIndex != nextIndex)
{
// Vertex list error
if (errored.insert (previous).second)
errors.pushVertexError (CLigoError::VertexList, previous, 0);
if (errored.insert (next).second)
errors.pushVertexError (CLigoError::VertexList, next, 0);
// Main error
errors.MainError = CLigoError::VertexList;
}
}
// Next vertex
previous = next;
vertIte++;
}
// No error ?
if (errored.empty())
{
// Only one list
nlassert (segmentList.size()==1);
// First of the list
vertIte = listVert.begin();
// Remove first
listVert.erase (vertIte);
// Find a corner
list<uint>::iterator firstIte = listVert.begin();
while (firstIte != listVert.end())
{
// Corner ?
if ( (boundaryFlags[*firstIte] & (SnappedXFlag|SnappedYFlag)) == (SnappedXFlag|SnappedYFlag) )
// Yes, exit
break;
// Next
firstIte++;
}
// Can't be the last
if (firstIte == listVert.end())
{
// No corner found
errors.MainError = CLigoError::NoCornerFound;
return false;
}
// First of the segment
vertIte = firstIte;
// Current edge list
std::vector<uint32> edge;
// Push the first
edge.push_back (*vertIte);
// Next
vertIte++;
// End ?
if (vertIte == listVert.end())
// Start
vertIte = listVert.begin();
// Edge index
uint edgeIndex = 0;
// Build the edges
for(;;)
{
// Add it
edge.push_back (*vertIte);
// Corner ?
if ( (boundaryFlags[*vertIte] & (SnappedXFlag|SnappedYFlag)) == (SnappedXFlag|SnappedYFlag) )
{
// Get the index of start and end of the edge
sint32 startX = getSnappedIndex (vertices[edge[0]].x, config.CellSize, config.Snap);
sint32 startY = getSnappedIndex (vertices[edge[0]].y, config.CellSize, config.Snap);
sint32 endX = getSnappedIndex (vertices[edge[edge.size()-1]].x, config.CellSize, config.Snap);
sint32 endY = getSnappedIndex (vertices[edge[edge.size()-1]].y, config.CellSize, config.Snap);
// Same point ?
if ((startX==endX) && (startY==endY))
{
// Error, two times the same vertex
errors.MainError = CLigoError::TwoCornerVertices;
errors.pushVertexError (CLigoError::TwoCornerVertices, edge[0], 0);
errors.pushVertexError (CLigoError::TwoCornerVertices, edge[edge.size()-1], 0);
return false;
}
// Same point ?
if ((abs(startX-endX)>1) || (abs(startY-endY)>1))
{
// Error, two times the same vertex
errors.MainError = CLigoError::CornerIsMissing;
errors.pushVertexError (CLigoError::CornerIsMissing, edge[0], 0);
errors.pushVertexError (CLigoError::CornerIsMissing, edge[edge.size()-1], 0);
return false;
}
// Get rotation
uint rotation = 4;
if ((endX-startX)==1)
{
if ((endY-startY)==0)
rotation = 0;
}
else if ((endX-startX)==-1)
{
if ((endY-startY)==0)
rotation = 2;
}
else if ((endX-startX)==0)
{
if ((endY-startY)==1)
rotation = 1;
else if ((endY-startY)==-1)
rotation = 3;
}
// Checks
nlassert (rotation != 4);
// Build the vertex array
vector<CVector> vertexArray;
vertexArray.resize (edge.size());
// Rotate matrix
CMatrix mat;
mat.identity();
mat.rotateZ ((float)rotation * (float)Pi / 2);
mat.setPos (CVector (vertices[edge[0]].x, vertices[edge[0]].y, 0));
mat.invert ();
// Rotate the array
for (uint i=0; i<edge.size(); i++)
{
// Get the value on the edge
vertexArray[i] = mat * vertices[edge[i]];
}
// Build the edge
_Edges.resize (edgeIndex+1);
// It must work without errors
CLigoError errorBis;
if (!_Edges[edgeIndex].build (vertexArray, edge, rotation, startX, startY, config, errorBis))
{
// Flat zone
errors.MainError = CLigoError::FlatZone;
return false;
}
// One more edge
edgeIndex++;
// Exit ?
if (vertIte == firstIte)
break;
// Clear the temp edge
edge.clear ();
// Push back the last vertex
edge.push_back (*vertIte);
}
// Next vertex
vertIte++;
// End ?
if (vertIte == listVert.end())
// Start
vertIte = listVert.begin();
}
sint32 bestX = 0x7fffffff;
sint32 bestY = 0x80000000;
uint bestEdge = 0xffffffff;
// Sort edges : the first as the lower x then greater y
uint edgeId;
for (edgeId=0; edgeId<_Edges.size(); edgeId++)
{
// Get the matrix
CMatrix mat;
_Edges[edgeId].buildMatrix (mat, config);
// First vertex
CVector pos = mat * _Edges[edgeId].getVertex (0);
// Get X and Y
sint32 x = getSnappedIndex (pos.x, config.CellSize, config.Snap);
sint32 y = getSnappedIndex (pos.y, config.CellSize, config.Snap);
// Best ?
if ((x<bestX)||((x==bestX)&&(y>bestY)))
{
// This edgeId is best
bestX=x;
bestY=y;
bestEdge = edgeId;
}
}
// Check
nlassert (bestEdge!=0xffffffff);
// Reoder
std::vector<CZoneEdge> newEdge (_Edges.size());
for (edgeId=0; edgeId<_Edges.size(); edgeId++)
{
// Copy the edge
newEdge[edgeId]=_Edges[bestEdge++];
// Next
if (bestEdge==_Edges.size())
bestEdge=0;
}
// Copy the final array
_Edges=newEdge;
// Return ok
return true;
}
}
// Errors.
return false;
}
// ***************************************************************************
void CZoneTemplate::serial (NLMISC::IStream& s)
{
// open an XML node
s.xmlPush ("LIGO_ZONE_TEMPLATE");
// An header file
s.serialCheck (string ("LigoZoneTemplate") );
// Node for the boundaries
s.xmlPush ("EDGES");
// Serial the Vertices
s.serialCont (_Edges);
// Node for the boundaries
s.xmlPop ();
// Close the node
s.xmlPop ();
}
// ***************************************************************************
void CZoneTemplate::getMask (std::vector<bool> &mask, uint &width, uint &height)
{
// Some constantes
static const sint32 addX[4] = { 1, 0, -1, 0 };
static const sint32 addY[4] = { 0, 1, 0, -1 };
static const sint32 cellX[4] = { 0, -1, -1, 0 };
static const sint32 cellY[4] = { 0, 0, -1, -1 };
static const sint32 moveX[4] = { 0, 1, 0, -1 };
static const sint32 moveY[4] = { -1, 0, 1, 0 };
// Max
sint32 xMax = 0x80000000;
sint32 yMax = 0x80000000;
// For each edges
uint edges;
for (edges=0; edges<_Edges.size(); edges++)
{
// Get the rotation
uint32 rot = _Edges[edges].getRotation ();
nlassert (rot<4);
// Get X and Y max coordinates
sint32 x = _Edges[edges].getOffsetX () + addX[rot];
sint32 y = _Edges[edges].getOffsetY () + addY[rot];
// Greater ?
if (x > xMax)
xMax = x;
if (y > yMax)
yMax = y;
}
// Build the array
width = (uint32) xMax;
height = (uint32) yMax;
// Bit array for each cell
vector<uint32> edgeArray (xMax*yMax, 0);
// Resize it
mask.resize (xMax*yMax, false);
// Set of the cells in the mask
set<pair<sint32, sint32> > setCell;
// For each edge
for (edges=0; edges<_Edges.size(); edges++)
{
// Get the rotation
uint32 rot = _Edges[edges].getRotation ();
nlassert (rot<4);
// Get its x and y cell coordinate
sint32 x = _Edges[edges].getOffsetX () + cellX[rot];
sint32 y = _Edges[edges].getOffsetY () + cellY[rot];
// Fill the edge array
edgeArray[x+y*width] |= (1<<rot);
// Insert the cell
setCell.insert ( pair<sint32, sint32> (x, y) );
}
// Second set
set<pair<sint32, sint32> > setCell2;
// For each element in the set
set<pair<sint32, sint32> >::iterator ite = setCell.begin();
while (ite != setCell.end())
{
// For each direction
for (uint dir=0; dir<4; dir++)
{
// Get its x and y cell coordinate
sint32 x = ite->first;
sint32 y = ite->second;
// Edge in this direction ?
while ( (edgeArray[x+y*width] & (1<<dir) ) == 0)
{
// Move in this direction
x += moveX[dir];
y += moveY[dir];
// insert it
setCell2.insert ( pair<sint32, sint32> (x, y) );
// Some checks
nlassert (x>=0);
nlassert (x<(sint32)width);
nlassert (y>=0);
nlassert (y<(sint32)height);
}
}
// Next one
ite++;
}
// Merge the two set
ite = setCell2.begin();
while (ite != setCell2.end())
{
// Merge
setCell.insert (*ite);
// Next element
ite++;
}
// Done, fill the array
ite = setCell.begin();
while (ite != setCell.end())
{
// Merge
mask[ite->first+ite->second*width] = true;
// Next element
ite++;
}
}
// ***************************************************************************
}