khanat-opennel-code/code/nel/src/3d/ps_emitter.cpp
2016-12-09 16:04:26 +01:00

2919 lines
84 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "std3d.h"
#include "nel/3d/ps_emitter.h"
#include "nel/3d/material.h"
#include "nel/misc/line.h"
#include "nel/3d/dru.h"
#include "nel/3d/particle_system.h"
namespace NL3D {
static const uint EMITTER_BUFF_SIZE = 512; // number of emitter to be processed at once
static const float EMIT_PERIOD_THRESHOLD = 1.f / 75.f; // assuming the same behaviour than with a 75 hz rendering
bool CPSEmitter::_BypassEmitOnDeath = false;
//////////////////////
// STATIC FUNCTIONS //
//////////////////////
/** In an arrey of float, all value that are 0.f are replaced by EMIT_PERIOD_THRESHOLD
* A period of 0 is allowed for emitter and means "emit at each frame"
* This is deprecated now, and this helps to avoid that behaviour
*/
static void replaceNullPeriodsByThreshold(float *tab, uint numElem)
{
NL_PS_FUNC(replaceNullPeriodsByThreshold)
const float *endTab = tab + numElem;
while (tab != endTab)
{
if (*tab == 0.f) *tab = EMIT_PERIOD_THRESHOLD;
++ tab;
}
}
///////////////////////////////
// CPSEmitter implementation //
///////////////////////////////
CPSEmitter::CPSEmitter() : _EmittedType(NULL),
_SpeedInheritanceFactor(0.f),
_EmissionType(regular),
_Period(0.02f),
_PeriodScheme(NULL),
_GenNb(1),
_GenNbScheme(NULL),
_EmitDelay(0),
_MaxEmissionCount(0),
_SpeedBasisEmission(false),
_ConsistentEmission(true),
_BypassAutoLOD(false),
_UserMatrixModeForEmissionDirection(false),
_EmitTrigger(false),
_UserDirectionMatrixMode(PSFXWorldMatrix)
{
NL_PS_FUNC(CPSEmitter_CPSEmitter)
}
///==========================================================================
CPSEmitter::~CPSEmitter()
{
NL_PS_FUNC(CPSEmitter_CPSEmitterDtor)
delete _PeriodScheme;
delete _GenNbScheme;
// if a located is emitted, unregister us as an observer
if (_EmittedType)
{
_EmittedType->unregisterDtorObserver(this);
}
}
///==========================================================================
void CPSEmitter::releaseRefTo(const CParticleSystemProcess *other)
{
NL_PS_FUNC(CPSEmitter_releaseRefTo)
if (_EmittedType == other)
{
setEmittedType(NULL);
}
}
void CPSEmitter::releaseAllRef()
{
NL_PS_FUNC(CPSEmitter_releaseAllRef)
setEmittedType(NULL);
}
///==========================================================================
void CPSEmitter::setOwner(CPSLocated *psl)
{
NL_PS_FUNC(CPSEmitter_setOwner)
CPSLocatedBindable::setOwner(psl);
updateMaxCountVect();
}
///==========================================================================
inline void CPSEmitter::processEmit(uint32 index, sint nbToGenerate)
{
NL_PS_FUNC(CPSEmitter_processEmit)
NLMISC::CVector speed, pos;
nlassert(_Owner);
if (!_SpeedBasisEmission)
{
if (_SpeedInheritanceFactor == 0.f)
{
if (!_UserMatrixModeForEmissionDirection)
{
while (nbToGenerate > 0)
{
nbToGenerate --;
emit(_Owner->getPos()[index], index, pos, speed);
_EmittedType->postNewElement(pos, speed, *this->_Owner, index, _Owner->getMatrixMode(), 0.f);
}
}
else
{
while (nbToGenerate > 0)
{
nbToGenerate --;
emit(_Owner->getPos()[index], index, pos, speed);
_EmittedType->postNewElement(pos, speed, *this->_Owner, index, _UserDirectionMatrixMode, 0.f);
}
}
}
else
{
while (nbToGenerate --)
{
emit(_Owner->getPos()[index], index, pos, speed);
_EmittedType->postNewElement(pos, speed + _SpeedInheritanceFactor * _Owner->getSpeed()[index], *this->_Owner, 0, _Owner->getMatrixMode(), 0.f);
}
}
}
else
{
NLMISC::CMatrix m;
CPSUtil::buildSchmidtBasis(_Owner->getSpeed()[index], m);
if (_SpeedInheritanceFactor == 0.f)
{
while (nbToGenerate > 0)
{
nbToGenerate --;
emit(_Owner->getPos()[index], index, pos, speed);
_EmittedType->postNewElement(pos, m * speed, *this->_Owner, index, _Owner->getMatrixMode(), 0.f);
}
}
else
{
while (nbToGenerate --)
{
emit(_Owner->getPos()[index], index, pos, speed);
_EmittedType->postNewElement(pos, m * speed + _SpeedInheritanceFactor * _Owner->getSpeed()[index], *this->_Owner, index, _Owner->getMatrixMode(), 0.f);
}
}
}
}
///==========================================================================
void CPSEmitter::processEmitOutsideSimLoop(uint32 index,sint nbToGenerate)
{
NL_PS_FUNC(CPSEmitter_processEmitOutsideSimLoop)
NLMISC::CVector speed, pos;
nlassert(_Owner);
if (!_SpeedBasisEmission)
{
if (_SpeedInheritanceFactor == 0.f)
{
if (!_UserMatrixModeForEmissionDirection)
{
while (nbToGenerate > 0)
{
nbToGenerate --;
emit(_Owner->getPos()[index], index, pos, speed);
_EmittedType->newElement(pos, speed, this->_Owner, index, _Owner->getMatrixMode(), true);
}
}
else
{
while (nbToGenerate > 0)
{
nbToGenerate --;
emit(_Owner->getPos()[index], index, pos, speed);
_EmittedType->newElement(pos, speed, this->_Owner, index, _UserDirectionMatrixMode);
}
}
}
else
{
while (nbToGenerate --)
{
emit(_Owner->getPos()[index], index, pos, speed);
_EmittedType->newElement(pos, speed + _SpeedInheritanceFactor * _Owner->getSpeed()[index], this->_Owner, 0, _Owner->getMatrixMode(), true);
}
}
}
else
{
NLMISC::CMatrix m;
CPSUtil::buildSchmidtBasis(_Owner->getSpeed()[index], m);
if (_SpeedInheritanceFactor == 0.f)
{
while (nbToGenerate > 0)
{
nbToGenerate --;
emit(_Owner->getPos()[index], index, pos, speed);
_EmittedType->newElement(pos, m * speed, this->_Owner, index, _Owner->getMatrixMode(), true);
}
}
else
{
while (nbToGenerate --)
{
emit(_Owner->getPos()[index], index, pos, speed);
_EmittedType->newElement(pos, m * speed + _SpeedInheritanceFactor * _Owner->getSpeed()[index], this->_Owner, index, _Owner->getMatrixMode(), true);
}
}
}
}
///==========================================================================
inline void CPSEmitter::processEmitConsistent(const NLMISC::CVector &emitterPos,
uint32 index,
sint nbToGenerate,
TAnimationTime deltaT)
{
NL_PS_FUNC(CPSEmitter_processEmitConsistent)
static NLMISC::CVector speed, pos; /// speed and pos of emittee
nlassert(_Owner);
if (!_SpeedBasisEmission)
{
if (_SpeedInheritanceFactor == 0.f)
{
if (!_UserMatrixModeForEmissionDirection)
{
while (nbToGenerate > 0)
{
nbToGenerate --;
emit(emitterPos, index, pos, speed);
_EmittedType->postNewElement(pos, speed, *this->_Owner, index, _Owner->getMatrixMode(), deltaT);
}
}
else
{
while (nbToGenerate > 0)
{
nbToGenerate --;
emit(emitterPos, index, pos, speed);
_EmittedType->postNewElement(pos, speed, *this->_Owner, index, _UserDirectionMatrixMode, deltaT);
}
}
}
else
{
while (nbToGenerate --)
{
emit(emitterPos, index, pos, speed);
_EmittedType->postNewElement(pos, speed + _SpeedInheritanceFactor * _Owner->getSpeed()[index], *this->_Owner, index, _Owner->getMatrixMode(), deltaT);
}
}
}
else
{
NLMISC::CMatrix m;
CPSUtil::buildSchmidtBasis(_Owner->getSpeed()[index], m);
if (_SpeedInheritanceFactor == 0.f)
{
while (nbToGenerate > 0)
{
nbToGenerate --;
emit(emitterPos, index, pos, speed);
_EmittedType->postNewElement(pos, m * speed, *this->_Owner, index, _Owner->getMatrixMode(), deltaT);
}
}
else
{
while (nbToGenerate --)
{
emit(emitterPos, index, pos, speed);
_EmittedType->postNewElement(pos, m * speed + _SpeedInheritanceFactor * _Owner->getSpeed()[index], *this->_Owner, index, _Owner->getMatrixMode(), deltaT);
}
}
}
}
///==========================================================================
bool CPSEmitter::setEmissionType(TEmissionType freqType)
{
NL_PS_FUNC(CPSEmitter_setEmissionType)
if (_Owner && _Owner->getOwner())
{
CParticleSystem *ps = _Owner->getOwner();
if (ps->getBypassMaxNumIntegrationSteps())
{
if (!_Owner)
{
nlwarning("<CPSEmitter::setEmissionType> The emitter should be inserted in a CPSLocated instance");
nlassert(0);
}
// check if the new value is valid
TEmissionType oldType = _EmissionType;
_EmissionType = freqType;
if (testEmitForever() == true)
{
_EmissionType = oldType;
std::string mess = "<CPSEmitter::setEmissionType> can't set emission type to '" +
NLMISC::toString(freqType) +
"' with the current configuration : the system has been flagged with \
'BypassMaxNumIntegrationSteps', and should have a finite duration. \
The flag is not set";
nlwarning(mess.c_str());
return false;
}
}
ps->systemDurationChanged();
}
_EmissionType = freqType;
return true;
}
///==========================================================================
bool CPSEmitter::setEmittedType(CPSLocated *et)
{
NL_PS_FUNC(CPSEmitter_setEmittedType)
if (_EmittedType)
{
_EmittedType->unregisterDtorObserver(this);
}
if (et)
{
et->registerDtorObserver(this);
}
CPSLocated *oldType = _EmittedType;
_EmittedType = et;
if (_Owner && _Owner->getOwner())
{
CParticleSystem *ps = _Owner->getOwner();
if (_EmittedType)
{
bool ok = true;
if (ps->getBypassMaxNumIntegrationSteps())
{
ok = ps->canFinish();
}
else
{
ok = !ps->hasLoop();
}
if (!ok)
{
setEmittedType(oldType);
nlwarning("<CPSLocated::setEmittedType> Can't set new emitted type : this causes the system to last forever, and it has been flagged with 'BypassMaxNumIntegrationSteps'. New emitted type is not set");
return false;
}
}
ps->systemDurationChanged();
}
return true;
}
///==========================================================================
void CPSEmitter::notifyTargetRemoved(CPSLocated *ptr)
{
NL_PS_FUNC(CPSEmitter_notifyTargetRemoved)
nlassert(ptr == _EmittedType && _EmittedType);
setEmittedType(NULL);
}
///==========================================================================
void CPSEmitter::setPeriod(float period)
{
NL_PS_FUNC(CPSEmitter_setPeriod)
if (_PeriodScheme)
{
delete _PeriodScheme;
_PeriodScheme = NULL;
}
_Period = period;
if (_Owner && _Owner->getOwner())
{
_Owner->getOwner()->systemDurationChanged();
}
}
///==========================================================================
void CPSEmitter::setPeriodScheme(CPSAttribMaker<float> *scheme)
{
NL_PS_FUNC(CPSEmitter_setPeriodScheme)
delete _PeriodScheme;
_PeriodScheme = scheme;
if (_Owner && scheme->hasMemory()) scheme->resize(_Owner->getMaxSize(), _Owner->getSize());
if (_Owner && _Owner->getOwner())
{
_Owner->getOwner()->systemDurationChanged();
}
}
///==========================================================================
void CPSEmitter::setGenNb(uint32 genNb)
{
NL_PS_FUNC(CPSEmitter_setGenNb)
if (_GenNbScheme)
{
delete _GenNbScheme;
_GenNbScheme = NULL;
}
_GenNb = genNb;
}
///==========================================================================
void CPSEmitter::setGenNbScheme(CPSAttribMaker<uint32> *scheme)
{
NL_PS_FUNC(CPSEmitter_setGenNbScheme)
delete _GenNbScheme;
_GenNbScheme = scheme;
if (_Owner && scheme->hasMemory()) scheme->resize(_Owner->getMaxSize(), _Owner->getSize());
}
///==========================================================================
void CPSEmitter::showTool(void)
{
NL_PS_FUNC(CPSEmitter_showTool)
uint32 size = _Owner->getSize();
if (!size) return;
setupDriverModelMatrix();
const CVector I = computeI();
const CVector K = computeK();
// ugly slow code, but not for runtime
for (uint k = 0; k < size; ++k)
{
// center of the current particle
const CVector p = _Owner->getPos()[k];
const float sSize =0.1f;
std::vector<NLMISC::CLine> lines;
NLMISC::CLine l;
l.V0 = p - sSize * I; l.V1 = p + sSize * I; lines.push_back(l);
l.V0 = p - sSize * K; l.V1 = p + sSize * K; lines.push_back(l);
l.V0 = p - sSize * (I + K); l.V1 = p + sSize * (I + K); lines.push_back(l);
l.V0 = p - sSize * (I - K); l.V1 = p + sSize * (I - K); lines.push_back(l);
CMaterial mat;
mat.setBlendFunc(CMaterial::one, CMaterial::one);
mat.setZWrite(false);
mat.setLighting(false);
mat.setBlend(true);
mat.setZFunc(CMaterial::less);
CPSLocated *loc;
uint32 index;
CPSLocatedBindable *lb;
_Owner->getOwner()->getCurrentEditedElement(loc, index, lb);
mat.setColor((lb == NULL || this == lb) && loc == _Owner && index == k ? CRGBA::Red : CRGBA(127, 127, 127));
CDRU::drawLinesUnlit(lines, mat, *getDriver() );
}
}
///==========================================================================
void CPSEmitter::singleEmit(uint32 index, uint quantity)
{
NL_PS_FUNC(CPSEmitter_singleEmit)
nlassert(_Owner);
const uint32 nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner,0) : _GenNb;
processEmitOutsideSimLoop(index, quantity * nbToGenerate);
}
///==========================================================================
void CPSEmitter::processRegularEmissionWithNoLOD(uint firstInstanceIndex)
{
NL_PS_FUNC(CPSEmitter_processRegularEmissionWithNoLOD)
nlassert(_Owner);
nlassert(_Owner->getOwner());
//
const bool emitThreshold = _Owner->getOwner()->isEmitThresholdEnabled();
//
const uint size = _Owner->getSize();
nlassert(firstInstanceIndex < size);
uint leftToDo = size - firstInstanceIndex, toProcess;
float emitPeriod[EMITTER_BUFF_SIZE];
const float *currEmitPeriod;
uint currEmitPeriodPtrInc = _PeriodScheme ? 1 : 0;
sint32 nbToGenerate;
TPSAttribTime::iterator phaseIt = _Phase.begin() + firstInstanceIndex, endPhaseIt;
TPSAttribUInt8::iterator numEmitIt = _NumEmission.begin() + firstInstanceIndex;
// we don't use an iterator here
// because it could be invalidated if size change (a located could generate itself)
do
{
toProcess = leftToDo < EMITTER_BUFF_SIZE ? leftToDo : EMITTER_BUFF_SIZE;
if (_PeriodScheme)
{
// compute period
// NB : we ask to clamp entry because life counter of emitter are incremented, then spawn is called, and only after that dead emitters are removed
// so we may have a life counter that is > to 1
currEmitPeriod = (float *) (_PeriodScheme->make(_Owner, size - leftToDo, emitPeriod, sizeof(float), toProcess, true, 1 << 16, true));
if (emitThreshold)
{
/** Test if 'make' filled our buffer. If this is not the case, we assume that values where precomputed, and that
* all null period have already been replaced by the threshold
*/
if (currEmitPeriod == emitPeriod)
{
// if there possibility to have 0 in the scheme ?
if (_PeriodScheme->getMinValue() <= 0.f && _PeriodScheme->getMaxValue() >= 0.f)
{
replaceNullPeriodsByThreshold(emitPeriod, toProcess);
}
}
}
}
else
{
if (_Period != 0.f || !emitThreshold)
{
currEmitPeriod = &_Period;
}
else
{
currEmitPeriod = &EMIT_PERIOD_THRESHOLD;
}
}
endPhaseIt = phaseIt + toProcess;
if (_MaxEmissionCount == 0) // no emission count limit
{
/// is there an emission delay ?
if (_EmitDelay == 0.f) // no emission delay
{
do
{
*phaseIt += CParticleSystem::EllapsedTime;
if ( *phaseIt >= *currEmitPeriod) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
*phaseIt -= ::floorf(*phaseIt / *currEmitPeriod) * *currEmitPeriod;
}
const uint32 k = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, k) : _GenNb;
processEmit(k, nbToGenerate);
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
}
while (phaseIt != endPhaseIt);
}
else // there's an emission delay
{
do
{
*phaseIt += CParticleSystem::EllapsedTime;
if ( *phaseIt >= *currEmitPeriod + _EmitDelay) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
*phaseIt -= ::floorf((*phaseIt - _EmitDelay) / *currEmitPeriod) * *currEmitPeriod;
}
const uint32 k = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, k) : _GenNb;
processEmit(k, nbToGenerate);
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
}
while (phaseIt != endPhaseIt);
}
}
else // there's an emission count limit
{
/// is there an emission delay ?
if (_EmitDelay == 0.f) // no emission delay
{
do
{
if (*numEmitIt < _MaxEmissionCount)
{
*phaseIt += CParticleSystem::EllapsedTime;
if ( *phaseIt >= *currEmitPeriod) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
*phaseIt -= ::floorf(*phaseIt / *currEmitPeriod) * *currEmitPeriod;
}
const uint32 k = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, k) : _GenNb;
processEmit(k, nbToGenerate);
++*numEmitIt;
}
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
++ numEmitIt;
}
while (phaseIt != endPhaseIt);
}
else // there's an emission delay
{
do
{
if (*numEmitIt < _MaxEmissionCount)
{
*phaseIt += CParticleSystem::EllapsedTime;
if ( *phaseIt >= *currEmitPeriod + _EmitDelay) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
*phaseIt -= ::floorf((*phaseIt - _EmitDelay) / *currEmitPeriod) * *currEmitPeriod;
}
const uint32 k = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, k) : _GenNb;
processEmit(k, nbToGenerate);
++*numEmitIt;
}
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
++numEmitIt;
}
while (phaseIt != endPhaseIt);
}
}
leftToDo -= toProcess;
}
while (leftToDo);
}
///==========================================================================
void CPSEmitter::processRegularEmission(uint firstInstanceIndex, float emitLOD)
{
NL_PS_FUNC(CPSEmitter_processRegularEmission)
nlassert(_Owner);
nlassert(_Owner->getOwner());
//
const bool emitThreshold = _Owner->getOwner()->isEmitThresholdEnabled();
//
const uint size = _Owner->getSize();
nlassert(firstInstanceIndex < size);
uint leftToDo = size - firstInstanceIndex, toProcess;
float emitPeriod[EMITTER_BUFF_SIZE];
const float *currEmitPeriod;
uint currEmitPeriodPtrInc = _PeriodScheme ? 1 : 0;
sint32 nbToGenerate;
TPSAttribTime::iterator phaseIt = _Phase.begin() + firstInstanceIndex, endPhaseIt;
TPSAttribUInt8::iterator numEmitIt = _NumEmission.begin() + firstInstanceIndex;
float ellapsedTimeLOD = emitLOD * CParticleSystem::EllapsedTime;
uint maxEmissionCountLOD = (uint8) (_MaxEmissionCount * emitLOD);
maxEmissionCountLOD = std::max(1u, maxEmissionCountLOD);
// we don't use an iterator here
// because it could be invalidated if size change (a located could generate itself)
do
{
toProcess = leftToDo < EMITTER_BUFF_SIZE ? leftToDo : EMITTER_BUFF_SIZE;
if (_PeriodScheme)
{
// compute period
// NB : we ask to clamp entry because life counter of emitter are incremented, then spawn is called, and only after that dead emitters are removed
// so we may have a life counter that is > to 1
currEmitPeriod = (float *) (_PeriodScheme->make(_Owner, size - leftToDo, emitPeriod, sizeof(float), toProcess, true, 1 << 16, true));
if (emitThreshold)
{
/** Test if 'make' filled our buffer. If this is not the case, we assume that values where precomputed, and that
* all null period have already been replaced by the threshold
*/
if (currEmitPeriod == emitPeriod)
{
// if there possibility to have 0 in the scheme ?
if (_PeriodScheme->getMinValue() <= 0.f && _PeriodScheme->getMaxValue() >= 0.f)
{
replaceNullPeriodsByThreshold(emitPeriod, toProcess);
}
}
}
}
else
{
if (_Period != 0.f || !emitThreshold)
{
currEmitPeriod = &_Period;
}
else
{
currEmitPeriod = &EMIT_PERIOD_THRESHOLD;
}
}
endPhaseIt = phaseIt + toProcess;
if (_MaxEmissionCount == 0) // no emission count limit
{
/// is there an emission delay ?
if (_EmitDelay == 0.f) // no emission delay
{
do
{
*phaseIt += ellapsedTimeLOD;
if ( *phaseIt >= *currEmitPeriod) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
*phaseIt -= ::floorf(*phaseIt / *currEmitPeriod) * *currEmitPeriod;
}
const uint32 k = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, k) : _GenNb;
if (nbToGenerate)
{
nbToGenerate = (sint32) (emitLOD * nbToGenerate);
if (!nbToGenerate) nbToGenerate = 1;
processEmit(k, nbToGenerate);
}
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
}
while (phaseIt != endPhaseIt);
}
else // there's an emission delay
{
do
{
if (*phaseIt < _EmitDelay)
{
*phaseIt += CParticleSystem::EllapsedTime;
if (*phaseIt < _EmitDelay)
{
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
continue;
}
else
{
*phaseIt = (*phaseIt - _EmitDelay) * emitLOD + _EmitDelay;
}
}
else
{
*phaseIt += ellapsedTimeLOD;
}
if ( *phaseIt >= *currEmitPeriod + _EmitDelay) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
*phaseIt -= ::floorf((*phaseIt - _EmitDelay) / *currEmitPeriod) * *currEmitPeriod;
}
const uint32 k = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, k) : _GenNb;
if (nbToGenerate)
{
nbToGenerate = (sint32) (emitLOD * nbToGenerate);
if (!nbToGenerate) nbToGenerate = 1;
processEmit(k, nbToGenerate);
}
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
}
while (phaseIt != endPhaseIt);
}
}
else // there's an emission count limit
{
/// is there an emission delay ?
if (_EmitDelay == 0.f) // no emission delay
{
do
{
if (*numEmitIt < maxEmissionCountLOD)
{
*phaseIt += ellapsedTimeLOD;
if ( *phaseIt >= *currEmitPeriod) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
*phaseIt -= ::floorf(*phaseIt / *currEmitPeriod) * *currEmitPeriod;
}
const uint32 k = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, k) : _GenNb;
if (nbToGenerate)
{
nbToGenerate = (sint32) (emitLOD * nbToGenerate);
if (!nbToGenerate) nbToGenerate = 1;
processEmit(k, nbToGenerate);
}
++*numEmitIt;
}
}
else
{
*numEmitIt = _MaxEmissionCount;
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
++ numEmitIt;
}
while (phaseIt != endPhaseIt);
}
else // there's an emission delay
{
do
{
if (*numEmitIt < maxEmissionCountLOD)
{
if (*phaseIt < _EmitDelay)
{
*phaseIt += CParticleSystem::EllapsedTime;
if (*phaseIt < _EmitDelay)
{
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
++numEmitIt;
currEmitPeriod += currEmitPeriodPtrInc;
continue;
}
else
{
*phaseIt = (*phaseIt - _EmitDelay) * emitLOD + _EmitDelay;
}
}
else
{
*phaseIt += ellapsedTimeLOD;
}
if ( *phaseIt >= *currEmitPeriod + _EmitDelay) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
*phaseIt -= ::floorf((*phaseIt - _EmitDelay) / *currEmitPeriod) * *currEmitPeriod;
}
const uint32 k = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, k) : _GenNb;
if (nbToGenerate)
{
nbToGenerate = (sint32) (nbToGenerate * emitLOD);
if (!nbToGenerate) nbToGenerate = 1;
processEmit(k, nbToGenerate);
}
++*numEmitIt;
}
}
else
{
*numEmitIt = _MaxEmissionCount;
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
++numEmitIt;
}
while (phaseIt != endPhaseIt);
}
}
leftToDo -= toProcess;
}
while (leftToDo);
}
/// private : generate the various position of an emitter in the given tab for the given slice of time,
// depending on whether its motion is parametric or incremental. This is used to create emittees at the right position
static
#ifndef NL_DEBUG
inline
#endif
uint GenEmitterPositions(CPSLocated *emitter,
CPSLocated *emittee,
uint emitterIndex,
uint numStep,
TAnimationTime deltaT, /* fraction of time needed to reach the first emission */
TAnimationTime step,
std::vector<NLMISC::CVector> &dest
)
{
NL_PS_FUNC(GenEmitterPositions)
const uint toProcess = std::max(1U, std::min(numStep, (uint) emittee->getMaxSize()));
dest.resize(toProcess);
if (!emitter->isParametricMotionEnabled()) // standard case : take current pos and integrate
{
if (toProcess == 1) // only one emission -> takes current pos
{
dest[0] = emitter->getPos()[emitterIndex] - deltaT * emitter->getSpeed()[emitterIndex];
}
else
{
std::vector<NLMISC::CVector>::iterator outIt = dest.end();
std::vector<NLMISC::CVector>::iterator endIt = dest.begin();
NLMISC::CVector pos = emitter->getPos()[emitterIndex] - deltaT * emitter->getSpeed()[emitterIndex];
NLMISC::CVector speed = step * emitter->getSpeed()[emitterIndex];
do
{
-- outIt;
*outIt = pos;
pos -= speed;
}
while (outIt != endIt);
}
}
else // compute parametric trajectory
{
emitter->integrateSingle(emitter->getOwner()->getSystemDate() + CParticleSystem::RealEllapsedTime - deltaT,
-step,
toProcess,
emitterIndex,
&dest[0]
);
}
return toProcess;
}
/** The same as GenEmitterPositions, but with LOD taken in account.
*/
static inline uint GenEmitterPositionsWithLOD(CPSLocated *emitter,
CPSLocated *emittee,
uint emitterIndex,
uint numStep,
TAnimationTime deltaT, /* fraction of time needed to reach the first emission */
TAnimationTime step,
float invLODRatio,
std::vector<NLMISC::CVector> &dest
)
{
NL_PS_FUNC(GenEmitterPositionsWithLOD)
const uint toProcess = std::max(1U, std::min(numStep, (uint) emittee->getMaxSize()));
dest.resize(toProcess);
if (!emitter->isParametricMotionEnabled()) // standard case : take current pos and integrate
{
if (toProcess == 1) // only one emission -> takes current pos
{
dest[0] = emitter->getPos()[emitterIndex] - deltaT * emitter->getSpeed()[emitterIndex];
}
else
{
std::vector<NLMISC::CVector>::iterator outIt = dest.end();
std::vector<NLMISC::CVector>::iterator endIt = dest.begin();
NLMISC::CVector pos = emitter->getPos()[emitterIndex] - deltaT * emitter->getSpeed()[emitterIndex];
NLMISC::CVector speed = step * invLODRatio * emitter->getSpeed()[emitterIndex];
do
{
-- outIt;
*outIt = pos;
pos -= speed;
}
while (outIt != endIt);
}
}
else // compute parametric trajectory
{
emitter->integrateSingle(emitter->getOwner()->getSystemDate() - deltaT - step * toProcess,
step,
toProcess,
emitterIndex,
&dest[0]
);
}
return toProcess;
}
///==========================================================================
void CPSEmitter::processRegularEmissionConsistent(uint firstInstanceIndex, float emitLOD, float inverseEmitLOD)
{
NL_PS_FUNC(CPSEmitter_processRegularEmissionConsistent)
/// hmm some code factorisation would do no harm, but we want to keep tests outside the loops as much as possible...
nlassert(_Owner);
nlassert(_Owner->getOwner());
//
const bool emitThreshold = _Owner->getOwner()->isEmitThresholdEnabled();
//
static std::vector<NLMISC::CVector> emitterPositions;
// Positions for the emitter. They are computed by using a parametric trajectory or by using integration
const uint size = _Owner->getSize();
nlassert(firstInstanceIndex < size);
uint leftToDo = size - firstInstanceIndex, toProcess;
float emitPeriod[EMITTER_BUFF_SIZE];
const float *currEmitPeriod;
uint currEmitPeriodPtrInc = _PeriodScheme ? 1 : 0;
sint32 nbToGenerate;
TPSAttribTime::iterator phaseIt = _Phase.begin() + firstInstanceIndex, endPhaseIt;
TPSAttribUInt8::iterator numEmitIt;
if(firstInstanceIndex < _NumEmission.getSize())
{
numEmitIt = _NumEmission.begin() + firstInstanceIndex;
}
else
{
numEmitIt = _NumEmission.end();
}
float ellapsedTimeLOD = CParticleSystem::EllapsedTime * emitLOD;
uint maxEmissionCountLOD = (uint8) (_MaxEmissionCount * emitLOD);
maxEmissionCountLOD = std::max(1u, maxEmissionCountLOD);
// we don't use an iterator here
// because it could be invalidated if size change (a located could generate itself)
do
{
toProcess = leftToDo < EMITTER_BUFF_SIZE ? leftToDo : EMITTER_BUFF_SIZE;
if (_PeriodScheme)
{
// compute period
// NB : we ask to clamp entry because life counter of emitter are incremented, then spawn is called, and only after that dead emitters are removed
// so we may have a life counter that is > to 1
currEmitPeriod = (float *) (_PeriodScheme->make(_Owner, size - leftToDo, emitPeriod, sizeof(float), toProcess, true, 1 << 16, true));
if (emitThreshold)
{
/** Test if 'make' filled our buffer. If this is not the case, we assume that values where precomputed, and that
* all null period have already been replaced by the threshold
*/
if (currEmitPeriod == emitPeriod)
{
// if there possibility to have 0 in the scheme ?
if (_PeriodScheme->getMinValue() <= 0.f && _PeriodScheme->getMaxValue() >= 0.f)
{
replaceNullPeriodsByThreshold(emitPeriod, toProcess);
}
}
}
}
else
{
if (_Period != 0.f || !emitThreshold)
{
currEmitPeriod = &_Period;
}
else
{
currEmitPeriod = &EMIT_PERIOD_THRESHOLD;
}
}
endPhaseIt = phaseIt + toProcess;
if (_MaxEmissionCount == 0) // no emission count limit
{
/// is there an emission delay ?
if (_EmitDelay == 0.f) // no emission delay
{
do
{
*phaseIt += ellapsedTimeLOD;
if ( *phaseIt >= *currEmitPeriod) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
/** Must ensure phase is valid if period decrease over time
*/
*phaseIt = std::min(*phaseIt, *currEmitPeriod + ellapsedTimeLOD);
//
/// compute the number of emissions
uint numEmissions = (uint) ::floorf(*phaseIt / *currEmitPeriod);
*phaseIt -= *currEmitPeriod * numEmissions;
uint emitterIndex = (uint)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
if (nbToGenerate)
{
float deltaT = std::max(0.f, *phaseIt);
/// compute the position of the emitter for the needed dates
numEmissions = GenEmitterPositionsWithLOD(_Owner,
_EmittedType,
emitterIndex,
numEmissions,
deltaT,
*currEmitPeriod,
inverseEmitLOD,
emitterPositions
);
/// process each emission at the right pos at the right date
nbToGenerate = (sint32) (emitLOD * nbToGenerate);
if (!nbToGenerate) nbToGenerate = 1;
uint k = numEmissions;
float deltaTInc = *currEmitPeriod * inverseEmitLOD;
do
{
--k;
processEmitConsistent(emitterPositions[k],
emitterIndex,
nbToGenerate,
deltaT
);
deltaT += deltaTInc;
}
while (k);
}
}
else
{
const uint32 emitterIndex = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
if (nbToGenerate)
{
nbToGenerate = (sint32) (emitLOD * nbToGenerate);
if (!nbToGenerate) nbToGenerate = 1;
processEmit(emitterIndex, nbToGenerate);
}
}
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
}
while (phaseIt != endPhaseIt);
}
else // thhere's an emission delay
{
do
{
if (*phaseIt < _EmitDelay)
{
*phaseIt += CParticleSystem::EllapsedTime;
if (*phaseIt < _EmitDelay)
{
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
continue;
}
else
{
*phaseIt = (*phaseIt - _EmitDelay) * emitLOD + _EmitDelay;
}
}
else
{
*phaseIt += ellapsedTimeLOD;
}
if ( *phaseIt >= *currEmitPeriod + _EmitDelay) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
/** Must ensure phase is valid if period decrease over time
*/
*phaseIt = std::min(*phaseIt, *currEmitPeriod + ellapsedTimeLOD + _EmitDelay);
//
uint numEmissions = (uint) ::floorf((*phaseIt - _EmitDelay) / *currEmitPeriod);
*phaseIt -= *currEmitPeriod * numEmissions;
float deltaT = std::max(*phaseIt - _EmitDelay, 0.f);
//nlassert(deltaT >= 0.f);
/// process each emission at the right pos at the right date
uint emitterIndex = (uint)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
if (nbToGenerate)
{
/// compute the position of the emitter for the needed date
numEmissions = GenEmitterPositionsWithLOD( _Owner,
_EmittedType,
emitterIndex,
numEmissions,
deltaT,
*currEmitPeriod,
inverseEmitLOD,
emitterPositions
);
nbToGenerate = (sint32) (emitLOD * nbToGenerate);
if (!nbToGenerate) nbToGenerate = 1;
uint k = numEmissions;
float deltaTInc = *currEmitPeriod * inverseEmitLOD;
do
{
--k;
processEmitConsistent(emitterPositions[k],
emitterIndex,
nbToGenerate,
deltaT);
deltaT += deltaTInc;
}
while (k);
}
}
else
{
const uint32 emitterIndex = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
if (nbToGenerate)
{
nbToGenerate = (sint32) (emitLOD * nbToGenerate);
if (!nbToGenerate) nbToGenerate = 1;
processEmit(emitterIndex, nbToGenerate);
}
}
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
}
while (phaseIt != endPhaseIt);
}
}
else // there's an emission count limit
{
/// is there an emission delay ?
if (_EmitDelay == 0.f) // no emission delay
{
do
{
if (*numEmitIt < maxEmissionCountLOD)
{
*phaseIt += ellapsedTimeLOD;
if ( *phaseIt >= *currEmitPeriod) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
/** Must ensure phase is valid if period decrease over time
*/
*phaseIt = std::min(*phaseIt, *currEmitPeriod + ellapsedTimeLOD);
//
uint numEmissions = (uint) ::floorf(*phaseIt / *currEmitPeriod);
*numEmitIt += numEmissions;
*phaseIt -= *currEmitPeriod * numEmissions;
float deltaT = std::max(*phaseIt, 0.f);
//nlassert(deltaT >= 0.f);
uint emitterIndex = (uint)(phaseIt - _Phase.begin());
if (*numEmitIt > _MaxEmissionCount) // make sure we don't go over the emission limit
{
numEmissions -= *numEmitIt - _MaxEmissionCount;
*numEmitIt = _MaxEmissionCount;
}
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
if (nbToGenerate)
{
/// compute the position of the emitter for the needed date
numEmissions = GenEmitterPositionsWithLOD(_Owner,
_EmittedType,
emitterIndex,
numEmissions,
deltaT,
*currEmitPeriod,
inverseEmitLOD,
emitterPositions
);
uint k = numEmissions;
/// process each emission at the right pos at the right date
nbToGenerate = (sint32) (emitLOD * nbToGenerate);
if (!nbToGenerate) nbToGenerate = 1;
float deltaTInc = *currEmitPeriod * inverseEmitLOD;
do
{
--k;
processEmitConsistent(emitterPositions[k],
emitterIndex,
nbToGenerate,
deltaT
);
deltaT += deltaTInc;
}
while (k);
}
}
else
{
const uint32 emitterIndex = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
if (nbToGenerate)
{
nbToGenerate = (sint32) (emitLOD * nbToGenerate);
if (!nbToGenerate) nbToGenerate = 1;
processEmit(emitterIndex, nbToGenerate);
++*numEmitIt;
}
}
}
}
else
{
*numEmitIt = _MaxEmissionCount; // if the lod change, must ensure that the
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
++ numEmitIt;
}
while (phaseIt != endPhaseIt);
}
else // there's an emission delay
{
do
{
if (*numEmitIt < maxEmissionCountLOD)
{
if (*phaseIt < _EmitDelay)
{
*phaseIt += CParticleSystem::EllapsedTime;
if (*phaseIt < _EmitDelay)
{
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
++numEmitIt;
continue;
}
else
{
*phaseIt = (*phaseIt - _EmitDelay) * emitLOD + _EmitDelay;
}
}
else
{
*phaseIt += ellapsedTimeLOD;
}
//
if ( *phaseIt >= *currEmitPeriod + _EmitDelay) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
/** Must ensure phase is valid if period decrease over time
*/
*phaseIt = std::min(*phaseIt, *currEmitPeriod + ellapsedTimeLOD + _EmitDelay);
//
uint numEmissions = (uint) ::floorf((*phaseIt - _EmitDelay) / *currEmitPeriod);
*numEmitIt += numEmissions;
*phaseIt -= *currEmitPeriod * numEmissions;
float deltaT = std::max(*phaseIt - _EmitDelay, 0.f);
//nlassert(deltaT >= 0.f);
uint emitterIndex = (uint)(phaseIt - _Phase.begin());
if (*numEmitIt > _MaxEmissionCount) // make sure we don't go over the emission limit
{
numEmissions -= *numEmitIt - _MaxEmissionCount;
*numEmitIt = _MaxEmissionCount;
}
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
if (nbToGenerate)
{
/// compute the position of the emitter for the needed date
numEmissions = GenEmitterPositionsWithLOD(_Owner,
_EmittedType,
emitterIndex,
numEmissions,
deltaT,
*currEmitPeriod,
inverseEmitLOD,
emitterPositions
);
uint k = numEmissions;
/// process each emission at the right pos at the right date
nbToGenerate = (sint32) (emitLOD * nbToGenerate);
if (!nbToGenerate) nbToGenerate = 1;
float deltaTInc = *currEmitPeriod * inverseEmitLOD;
do
{
--k;
processEmitConsistent(emitterPositions[k],
emitterIndex,
nbToGenerate,
deltaT);
deltaT += deltaTInc;
}
while (k);
}
}
else
{
const uint32 emitterIndex = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
if (nbToGenerate)
{
nbToGenerate = (sint32) (emitLOD * nbToGenerate);
if (!nbToGenerate) nbToGenerate = 1;
processEmit(emitterIndex, nbToGenerate);
++*numEmitIt;
}
}
}
}
else
{
*numEmitIt = _MaxEmissionCount; // if the lod change, must ensure that the
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
++numEmitIt;
}
while (phaseIt != endPhaseIt);
}
}
leftToDo -= toProcess;
}
while (leftToDo);
}
///==========================================================================
void CPSEmitter::processRegularEmissionConsistentWithNoLOD(uint firstInstanceIndex)
{
NL_PS_FUNC(CPSEmitter_processRegularEmissionConsistentWithNoLOD)
/// hum, some code factorization would do no harm, but we want to keep tests outside the loops as much as possible...
nlassert(_Owner);
nlassert(_Owner->getOwner());
//
const bool emitThreshold = _Owner->getOwner()->isEmitThresholdEnabled();
//
static std::vector<NLMISC::CVector> emitterPositions;
// Positions for the emitter. They are computed by using a parametric trajectory or by using integration
const uint size = _Owner->getSize();
nlassert(firstInstanceIndex < size);
uint leftToDo = size - firstInstanceIndex, toProcess;
float emitPeriod[EMITTER_BUFF_SIZE];
const float *currEmitPeriod;
uint currEmitPeriodPtrInc = _PeriodScheme ? 1 : 0;
sint32 nbToGenerate;
TPSAttribTime::iterator phaseIt = _Phase.begin() + firstInstanceIndex, endPhaseIt;
TPSAttribUInt8::iterator numEmitIt;
if (firstInstanceIndex < _NumEmission.getSize())
numEmitIt = _NumEmission.begin() + firstInstanceIndex;
else
numEmitIt = _NumEmission.end();
do
{
toProcess = leftToDo < EMITTER_BUFF_SIZE ? leftToDo : EMITTER_BUFF_SIZE;
if (_PeriodScheme)
{
// compute period
// NB : we ask to clamp entry because life counter of emitter are incremented, then spawn is called, and only after that dead emitters are removed
// so we may have a life counter that is > to 1
currEmitPeriod = (float *) (_PeriodScheme->make(_Owner, size - leftToDo, emitPeriod, sizeof(float), toProcess, true, 1 << 16, true));
if (emitThreshold)
{
/** Test if 'make' filled our buffer. If this is not the case, we assume that values where precomputed, and that
* all null period have already been replaced by the threshold
*/
if (currEmitPeriod == emitPeriod)
{
// if there possibility to have 0 in the scheme ?
if (_PeriodScheme->getMinValue() <= 0.f && _PeriodScheme->getMaxValue() >= 0.f)
{
replaceNullPeriodsByThreshold(emitPeriod, toProcess);
}
}
}
}
else
{
if (_Period != 0.f || !emitThreshold)
{
currEmitPeriod = &_Period;
}
else
{
currEmitPeriod = &EMIT_PERIOD_THRESHOLD;
}
}
endPhaseIt = phaseIt + toProcess;
if (_MaxEmissionCount == 0) // no emission count limit
{
/// is there an emission delay ?
if (_EmitDelay == 0.f) // no emission delay
{
do
{
*phaseIt += CParticleSystem::EllapsedTime;
if ( *phaseIt >= *currEmitPeriod) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
/** Must ensure phase is valid if period decrease over time
*/
*phaseIt = std::min(*phaseIt, *currEmitPeriod + CParticleSystem::EllapsedTime);
//
/// compute the number of emissions
uint numEmissions = (uint) ::floorf(*phaseIt / *currEmitPeriod);
*phaseIt -= *currEmitPeriod * numEmissions;
float deltaT = std::max(0.f, *phaseIt);
//nlassert(deltaT >= 0.f);
uint emitterIndex = (uint)(phaseIt - _Phase.begin());
/// compute the position of the emitter for the needed dates
numEmissions = GenEmitterPositions(_Owner,
_EmittedType,
emitterIndex,
numEmissions,
deltaT,
*currEmitPeriod,
emitterPositions
);
/// process each emission at the right pos at the right date
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
uint k = numEmissions;
do
{
--k;
processEmitConsistent(emitterPositions[k],
emitterIndex,
nbToGenerate,
deltaT);
deltaT += *currEmitPeriod;
}
while (k);
}
else
{
const uint32 emitterIndex = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
processEmit(emitterIndex, nbToGenerate);
}
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
}
while (phaseIt != endPhaseIt);
}
else // thhere's an emission delay
{
do
{
*phaseIt += CParticleSystem::EllapsedTime;
if ( *phaseIt >= *currEmitPeriod + _EmitDelay) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
/** Must ensure phase is valid if period decrease over time
*/
*phaseIt = std::min(*phaseIt, *currEmitPeriod + CParticleSystem::EllapsedTime + _EmitDelay);
//
uint numEmissions = (uint) ::floorf((*phaseIt - _EmitDelay) / *currEmitPeriod);
*phaseIt -= *currEmitPeriod * numEmissions;
float deltaT = std::max(*phaseIt - _EmitDelay, 0.f);
//nlassert(deltaT >= 0.f);
uint emitterIndex = (uint)(phaseIt - _Phase.begin());
/// compute the position of the emitter for the needed date
numEmissions = GenEmitterPositions(_Owner,
_EmittedType,
emitterIndex,
numEmissions,
deltaT,
*currEmitPeriod,
emitterPositions
);
/// process each emission at the right pos at the right date
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
uint k = numEmissions;
do
{
--k;
processEmitConsistent(emitterPositions[k],
emitterIndex,
nbToGenerate,
deltaT);
deltaT += *currEmitPeriod;
}
while (k);
}
else
{
const uint32 emitterIndex = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
processEmit(emitterIndex, nbToGenerate);
}
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
}
while (phaseIt != endPhaseIt);
}
}
else // there's an emission count limit
{
/// is there an emission delay ?
if (_EmitDelay == 0.f) // no emission delay
{
do
{
if (*numEmitIt < _MaxEmissionCount)
{
*phaseIt += CParticleSystem::EllapsedTime;
if ( *phaseIt >= *currEmitPeriod) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
/** Must ensure phase is valid if period decrease over time
*/
*phaseIt = std::min(*phaseIt, *currEmitPeriod + CParticleSystem::EllapsedTime);
//
uint numEmissions = (uint) ::floorf(*phaseIt / *currEmitPeriod);
*numEmitIt += numEmissions;
*phaseIt -= *currEmitPeriod * numEmissions;
float deltaT = std::max(*phaseIt, 0.f);
//nlassert(deltaT >= 0.f);
uint emitterIndex = (uint)(phaseIt - _Phase.begin());
if (*numEmitIt > _MaxEmissionCount) // make sure we don't go over the emission limit
{
numEmissions -= *numEmitIt - _MaxEmissionCount;
*numEmitIt = _MaxEmissionCount;
}
/// compute the position of the emitter for the needed date
numEmissions = GenEmitterPositions(_Owner,
_EmittedType,
emitterIndex,
numEmissions,
deltaT,
*currEmitPeriod,
emitterPositions
);
uint k = numEmissions;
/// process each emission at the right pos at the right date
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
do
{
--k;
processEmitConsistent(emitterPositions[k],
emitterIndex,
nbToGenerate,
deltaT);
deltaT += *currEmitPeriod;
}
while (k);
}
else
{
const uint32 emitterIndex = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
processEmit(emitterIndex, nbToGenerate);
++*numEmitIt;
}
}
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
++ numEmitIt;
}
while (phaseIt != endPhaseIt);
}
else // there's an emission delay
{
do
{
if (*numEmitIt < _MaxEmissionCount)
{
*phaseIt += CParticleSystem::EllapsedTime;
if ( *phaseIt >= *currEmitPeriod + _EmitDelay) // phase is greater than period -> must emit
{
if (*currEmitPeriod != 0)
{
/** Must ensure phase is valid if period decrease over time
*/
*phaseIt = std::min(*phaseIt, *currEmitPeriod + CParticleSystem::EllapsedTime + _EmitDelay);
//
uint numEmissions = (uint) ::floorf((*phaseIt - _EmitDelay) / *currEmitPeriod);
*numEmitIt += numEmissions;
*phaseIt -= *currEmitPeriod * numEmissions;
float deltaT = std::max(*phaseIt - _EmitDelay, 0.f);
//nlassert(deltaT >= 0.f);
uint emitterIndex = (uint)(phaseIt - _Phase.begin());
if (*numEmitIt > _MaxEmissionCount) // make sure we don't go over the emission limit
{
numEmissions -= *numEmitIt - _MaxEmissionCount;
*numEmitIt = _MaxEmissionCount;
}
/// compute the position of the emitter for the needed date
numEmissions = GenEmitterPositions(_Owner,
_EmittedType,
emitterIndex,
numEmissions,
deltaT,
*currEmitPeriod,
emitterPositions
);
uint k = numEmissions;
/// process each emission at the right pos at the right date
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
do
{
--k;
processEmitConsistent(emitterPositions[k],
emitterIndex,
nbToGenerate,
deltaT);
deltaT += *currEmitPeriod;
}
while (k);
}
else
{
const uint32 emitterIndex = (uint32)(phaseIt - _Phase.begin());
nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, emitterIndex) : _GenNb;
processEmit(emitterIndex, nbToGenerate);
++*numEmitIt;
}
}
}
++phaseIt;
currEmitPeriod += currEmitPeriodPtrInc;
++numEmitIt;
}
while (phaseIt != endPhaseIt);
}
}
leftToDo -= toProcess;
}
while (leftToDo);
}
///==========================================================================
void CPSEmitter::step(TPSProcessPass pass)
{
NL_PS_FUNC(CPSEmitter_step)
if (pass == PSToolRender)
{
showTool();
}
}
///==========================================================================
void CPSEmitter::computeSpawns(uint firstInstanceIndex)
{
NL_PS_FUNC(CPSEmitter_computeSpawns)
if (!_EmittedType) return;
nlassert(CParticleSystem::InsideSimLoop);
const uint32 size = _Owner->getSize();
if (!size) return;
if (CParticleSystem::EllapsedTime == 0.f) return; // do nothing when paused
CParticleSystem *ps = _Owner->getOwner();
nlassert(ps);
float emitLOD;
if (ps->isAutoLODEnabled() && !ps->isSharingEnabled() && !_BypassAutoLOD)
{
// temp test for auto lod
emitLOD = ps->getAutoLODEmitRatio();
}
else
{
emitLOD = 1.f;
}
nlassert(_EmissionType == CPSEmitter::regular);
if (!_ConsistentEmission)
{
if (emitLOD != 1.f)
{
processRegularEmission(firstInstanceIndex, emitLOD);
}
else
{
processRegularEmissionWithNoLOD(firstInstanceIndex);
}
}
else
{
if (emitLOD != 1.f)
{
if (emitLOD != 0.f)
{
processRegularEmissionConsistent(firstInstanceIndex, emitLOD, 1.f / emitLOD);
}
}
else
{
processRegularEmissionConsistentWithNoLOD(firstInstanceIndex);
}
}
}
///==========================================================================
void CPSEmitter::newElement(const CPSEmitterInfo &info)
{
NL_PS_FUNC(CPSEmitter_newElement)
nlassert(_Phase.getSize() != _Phase.getMaxSize());
_Phase.insert(0.f);
if (_MaxEmissionCount != 0)
{
_NumEmission.insert(0);
}
if (_PeriodScheme && _PeriodScheme->hasMemory()) _PeriodScheme->newElement(info);
if (_GenNbScheme && _GenNbScheme->hasMemory()) _GenNbScheme->newElement(info);
}
///==========================================================================
inline void CPSEmitter::deleteElementBase(uint32 index)
{
NL_PS_FUNC(CPSEmitter_deleteElementBase)
if (_PeriodScheme && _PeriodScheme->hasMemory()) _PeriodScheme->deleteElement(index);
if (_GenNbScheme && _GenNbScheme->hasMemory()) _GenNbScheme->deleteElement(index);
_Phase.remove(index);
if (_MaxEmissionCount != 0)
{
_NumEmission.remove(index);
}
}
///==========================================================================
void CPSEmitter::deleteElement(uint32 index)
{
NL_PS_FUNC(CPSEmitter_deleteElement)
if (_EmissionType == CPSEmitter::onDeath && _EmittedType && _Active)
{
if (!_BypassEmitOnDeath)
{
const uint32 nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, index) : _GenNb;
processEmitOutsideSimLoop(index, nbToGenerate);
}
}
deleteElementBase(index);
}
///==========================================================================
void CPSEmitter::deleteElement(uint32 index, TAnimationTime timeUntilNextSimStep)
{
NL_PS_FUNC(CPSEmitter_deleteElement)
if (_EmissionType == CPSEmitter::onDeath && _EmittedType && _Active)
{
const uint32 nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, index) : _GenNb;
processEmitConsistent(_Owner->getPos()[index], index, nbToGenerate, timeUntilNextSimStep);
}
deleteElementBase(index);
}
///==========================================================================
void CPSEmitter::resize(uint32 size)
{
NL_PS_FUNC(CPSEmitter_resize)
nlassert(size < (1 << 16));
if (_PeriodScheme && _PeriodScheme->hasMemory()) _PeriodScheme->resize(size, _Owner->getSize());
if (_GenNbScheme && _GenNbScheme->hasMemory()) _GenNbScheme->resize(size, _Owner->getSize());
_Phase.resize(size);
if (_MaxEmissionCount != 0)
{
_NumEmission.resize(size);
}
}
///==========================================================================
void CPSEmitter::bounceOccurred(uint32 index, TAnimationTime timeToNextSimStep)
{
NL_PS_FUNC(CPSEmitter_bounceOccurred)
// TODO : avoid duplication with deleteElement
if (_EmittedType && _EmissionType == CPSEmitter::onBounce)
{
const uint32 nbToGenerate = _GenNbScheme ? _GenNbScheme->get(_Owner, index) : _GenNb;
processEmitConsistent(_Owner->getPos()[index], index, nbToGenerate, timeToNextSimStep);
}
}
///==========================================================================
void CPSEmitter::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSEmitter_serial)
/// version 6 : the flag _EmitDirBasis no longer exist, it has been replaced by _UserMatrixModeForEmissionDirection
//
/// version 5 : added _BypassAutoLOD
/// version 4 : added consistent emissions
sint ver = f.serialVersion(6);
CPSLocatedBindable::serial(f);
f.serialPolyPtr(_EmittedType);
f.serial(_Phase);
f.serial(_SpeedInheritanceFactor);
bool speedBasisEmission = _SpeedBasisEmission; // tmp copy because of bitfield serialization scheme
f.serial(speedBasisEmission);
_SpeedBasisEmission = speedBasisEmission;
f.serialEnum(_EmissionType);
// this is for use with serial
bool trueB = true, falseB = false;
if (!f.isReading())
{
switch (_EmissionType)
{
case CPSEmitter::regular:
if (_PeriodScheme)
{
f.serial(trueB);
f.serialPolyPtr(_PeriodScheme);
}
else
{
f.serial(falseB);
f.serial(_Period);
}
if (ver >= 3)
{
f.serial(_EmitDelay, _MaxEmissionCount);
}
break;
default:
break;
}
if (_GenNbScheme)
{
f.serial(trueB);
f.serialPolyPtr(_GenNbScheme);
}
else
{
f.serial(falseB);
f.serial(_GenNb);
}
}
else
{
bool useScheme;
switch (_EmissionType)
{
case CPSEmitter::regular:
{
f.serial(useScheme);
if (useScheme)
{
delete _PeriodScheme;
f.serialPolyPtr(_PeriodScheme);
}
else
{
f.serial(_Period);
}
if (ver >= 3)
{
f.serial(_EmitDelay, _MaxEmissionCount);
updateMaxCountVect();
}
}
break;
default:
break;
}
f.serial(useScheme);
if (useScheme)
{
delete _GenNbScheme;
f.serialPolyPtr(_GenNbScheme);
}
else
{
f.serial(_GenNb);
}
}
if (ver > 1 && ver < 6)
{
nlassert(f.isReading());
bool emitDirBasis;
f.serial(emitDirBasis);
if (emitDirBasis)
{
_UserMatrixModeForEmissionDirection = false;
_UserDirectionMatrixMode = PSFXWorldMatrix;
}
else
{
_UserMatrixModeForEmissionDirection = true;
if (_Owner)
{
_UserDirectionMatrixMode = _Owner->getMatrixMode() == PSFXWorldMatrix ? PSIdentityMatrix : PSFXWorldMatrix;
}
else
{
_UserDirectionMatrixMode = PSFXWorldMatrix;
}
}
}
if (ver >= 4)
{
bool consistentEmission = _ConsistentEmission; // tmp copy because of bitfield serialization scheme
f.serial(consistentEmission);
_ConsistentEmission = consistentEmission;
}
if (ver >= 5)
{
bool byassAutoLOD = _BypassAutoLOD; // tmp copy because of bitfield serialization scheme
f.serial(byassAutoLOD);
_BypassAutoLOD = byassAutoLOD;
}
if (ver >= 6)
{
bool userMatrixModeForEmissionDirection = _UserMatrixModeForEmissionDirection; // tmp copy because of bitfield serialization scheme
f.serial(userMatrixModeForEmissionDirection);
_UserMatrixModeForEmissionDirection = userMatrixModeForEmissionDirection;
f.serialEnum(_UserDirectionMatrixMode);
}
}
///==========================================================================
void CPSEmitter::updateMaxCountVect()
{
NL_PS_FUNC(CPSEmitter_updateMaxCountVect)
if (!_MaxEmissionCount || !_Owner)
{
_NumEmission.resize(0);
}
else
{
_NumEmission.resize(_Owner->getMaxSize());
while (_NumEmission.getSize() != 0)
{
_NumEmission.remove(0);
}
while (_NumEmission.getSize() != _Owner->getSize())
{
_NumEmission.insert(0);
}
}
}
///==========================================================================
void CPSEmitter::setEmitDelay(float delay)
{
NL_PS_FUNC(CPSEmitter_setEmitDelay)
_EmitDelay = delay;
if (_Owner && _Owner->getOwner())
{
_Owner->getOwner()->systemDurationChanged();
}
}
///==========================================================================
bool CPSEmitter::setMaxEmissionCount(uint8 count)
{
NL_PS_FUNC(CPSEmitter_setMaxEmissionCount)
if (count == _MaxEmissionCount) return true;
nlassert(_Owner && _Owner->getOwner());
CParticleSystem *ps = _Owner->getOwner();
if (ps->getBypassMaxNumIntegrationSteps())
{
uint8 oldEmissiontCount = _MaxEmissionCount;
// should check that the new value is valid
_MaxEmissionCount = count;
if (testEmitForever())
{
_MaxEmissionCount = oldEmissiontCount;
nlwarning("<CPSEmitter::setMaxEmissionCount> can't set max emission count to %d \
with the current configuration : the system has been flagged with \
'BypassMaxNumIntegrationSteps', and should have a finite duration. \
The new value is not set", (int) count);
return false;
}
}
ps->systemDurationChanged();
_MaxEmissionCount = count;
updateMaxCountVect();
return true;
}
///==========================================================================
bool CPSEmitter::checkLoop() const
{
NL_PS_FUNC(CPSEmitter_checkLoop)
nlassert(_Owner);
nlassert(_Owner->getOwner());
if (!_EmittedType) return false;
std::set<const CPSLocated *> seenLocated; // the located we've already seen
std::vector<const CPSLocated *> leftLoc(1); // the located that are left to see
leftLoc[0] = _EmittedType;
do
{
const CPSLocated *curr = leftLoc.back();
if (curr == this->_Owner) return true;
leftLoc.pop_back();
seenLocated.insert(curr);
for(uint32 k = 0; k < curr->getNbBoundObjects(); ++k)
{
const CPSEmitter *emitter = dynamic_cast<const CPSEmitter *>(curr->getBoundObject(k));
if (emitter && emitter->_EmittedType)
{
if (seenLocated.find(emitter->_EmittedType) == seenLocated.end()) // not already seen this one ?
{
leftLoc.push_back(emitter->_EmittedType);
}
}
}
}
while (!leftLoc.empty());
return false;
}
///==========================================================================
bool CPSEmitter::testEmitForever() const
{
NL_PS_FUNC(CPSEmitter_testEmitForever)
if (!_Owner)
{
nlwarning("<CPSEmitter::testEmitForever> The emitter should be inserted in a CPSLocated instance for this call to work.");
nlassert(0);
return true;
}
if (!_Owner->getLastForever()) return false;
switch(getEmissionType())
{
case CPSEmitter::onBounce:
case CPSEmitter::externEmit:
case CPSEmitter::regular:
// it is ok only if a limited number of located is emitted
if (getMaxEmissionCount() == 0) return true;
break;
case CPSEmitter::onDeath: return true; // the emitter never dies, so ..
case CPSEmitter::once: return false;
break;
default:
nlassert(0); // not a known type
break;
}
return false;
}
////////////////////////////////////////////
// implementation of CPSModulatedEmitter //
////////////////////////////////////////////
void CPSModulatedEmitter::serialEmitteeSpeedScheme(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSModulatedEmitter_IStream )
bool useScheme;
if (!f.isReading())
{
useScheme = useEmitteeSpeedScheme();
}
f.serial(useScheme);
if (useScheme)
{
f.serialPolyPtr(_EmitteeSpeedScheme);
}
else
{
f.serial(_EmitteeSpeed);
}
}
////////////////////////////////////////////
// implementation of CPSEmitterOmni //
////////////////////////////////////////////
///==========================================================================
void CPSEmitterOmni::emit(const NLMISC::CVector &srcPos, uint32 index, CVector &pos, CVector &speed)
{
NL_PS_FUNC(CPSEmitterOmni_emit)
// TODO : verifier que ca marche si une particule s'emet elle-mem
nlassert(_EmittedType);
CVector v( ((rand() % 1000) - 500) / 500.0f
, ((rand() % 1000) - 500) / 500.0f
, ((rand() % 1000) - 500) / 500.0f);
v.normalize();
v *= _EmitteeSpeedScheme ? _EmitteeSpeedScheme->get(_Owner, index) : _EmitteeSpeed;
pos = srcPos;
speed = v;
}
///==========================================================================
void CPSEmitterOmni::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSEmitterOmni_serial)
f.serialVersion(1);
CPSEmitter::serial(f);
CPSModulatedEmitter::serialEmitteeSpeedScheme(f);
}
///==========================================================================
void CPSEmitterOmni::newElement(const CPSEmitterInfo &info)
{
NL_PS_FUNC(CPSEmitterOmni_newElement)
CPSEmitter::newElement(info);
newEmitteeSpeedElement(info);
}
///==========================================================================
inline void CPSEmitterOmni::deleteElementBase(uint32 index)
{
NL_PS_FUNC(CPSEmitterOmni_deleteElementBase)
deleteEmitteeSpeedElement(index);
}
///==========================================================================
void CPSEmitterOmni::deleteElement(uint32 index, TAnimationTime timeUntilNextSimStep)
{
NL_PS_FUNC(CPSEmitterOmni_deleteElement)
CPSEmitter::deleteElement(index, timeUntilNextSimStep);
deleteElementBase(index);
}
///==========================================================================
void CPSEmitterOmni::deleteElement(uint32 index)
{
NL_PS_FUNC(CPSEmitterOmni_deleteElement)
CPSEmitter::deleteElement(index);
deleteElementBase(index);
}
///==========================================================================
void CPSEmitterOmni::resize(uint32 capacity)
{
NL_PS_FUNC(CPSEmitterOmni_resize)
nlassert(capacity < (1 << 16));
CPSEmitter::resize(capacity);
resizeEmitteeSpeed(capacity);
}
///==========================================================================
void CPSEmitterDirectionnal::emit(const NLMISC::CVector &srcPos, uint32 index, CVector &pos, CVector &speed)
{
NL_PS_FUNC(CPSEmitterDirectionnal_emit)
// TODO : verifier que ca marche si une particule s'emet elle-mem
nlassert(_EmittedType);
speed = (_EmitteeSpeedScheme ? _EmitteeSpeedScheme->get(_Owner, index) : _EmitteeSpeed) * _Dir;
pos = srcPos;
}
///==========================================================================
void CPSEmitterDirectionnal::newElement(const CPSEmitterInfo &info)
{
NL_PS_FUNC(CPSEmitterDirectionnal_newElement)
CPSEmitter::newElement(info);
newEmitteeSpeedElement(info);
}
///==========================================================================
inline void CPSEmitterDirectionnal::deleteElementBase(uint32 index)
{
NL_PS_FUNC(CPSEmitterDirectionnal_deleteElementBase)
deleteEmitteeSpeedElement(index);
}
///==========================================================================
void CPSEmitterDirectionnal::deleteElement(uint32 index, TAnimationTime timeUntilNextSimStep)
{
NL_PS_FUNC(CPSEmitterDirectionnal_deleteElement)
CPSEmitter::deleteElement(index, timeUntilNextSimStep);
deleteElementBase(index);
}
///==========================================================================
void CPSEmitterDirectionnal::deleteElement(uint32 index)
{
NL_PS_FUNC(CPSEmitterDirectionnal_deleteElement)
CPSEmitter::deleteElement(index);
deleteElementBase(index);
}
///==========================================================================
void CPSEmitterDirectionnal::resize(uint32 capacity)
{
NL_PS_FUNC(CPSEmitterDirectionnal_resize)
nlassert(capacity < (1 << 16));
CPSEmitter::resize(capacity);
resizeEmitteeSpeed(capacity);
}
///==========================================================================
void CPSEmitterDirectionnal::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSEmitterDirectionnal_IStream )
f.serialVersion(1);
CPSEmitter::serial(f);
CPSModulatedEmitter::serialEmitteeSpeedScheme(f);
f.serial(_Dir);
}
////////////////////////////////////////////
// implementation of CPSEmitterRectangle //
////////////////////////////////////////////
///==========================================================================
void CPSEmitterRectangle::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSEmitterRectangle_IStream )
f.serialVersion(1);
CPSEmitter::serial(f);
CPSModulatedEmitter::serialEmitteeSpeedScheme(f);
f.serial(_Basis);
f.serial(_Width);
f.serial(_Height);
f.serial(_Dir);
}
///==========================================================================
void CPSEmitterRectangle::emit(const NLMISC::CVector &srcPos, uint32 index, CVector &pos, CVector &speed)
{
NL_PS_FUNC(CPSEmitterRectangle_emit)
CVector N = _Basis[index].X ^ _Basis[index].Y;
pos = srcPos + ((rand() % 32000) * (1.f / 16000) - 1.f) * _Width[index] * _Basis[index].X
+ ((rand() % 32000) * (1.f / 16000) - 1.f) * _Height[index] * _Basis[index].Y;
speed = (_EmitteeSpeedScheme ? _EmitteeSpeedScheme->get(_Owner, index) : _EmitteeSpeed)
* (_Dir.x * _Basis[index].X+ _Dir.y * _Basis[index].Y + _Dir.z * N);
}
///==========================================================================
void CPSEmitterRectangle::setMatrix(uint32 index, const CMatrix &m)
{
NL_PS_FUNC(CPSEmitterRectangle_setMatrix)
_Owner->getPos()[index] = m.getPos();
_Basis[index].X = m.getI();
_Basis[index].Y = m.getJ();
}
///==========================================================================
CMatrix CPSEmitterRectangle::getMatrix(uint32 index) const
{
NL_PS_FUNC(CPSEmitterRectangle_getMatrix)
CMatrix m;
m.setPos(_Owner->getPos()[index]);
m.setRot(_Basis[index].X, _Basis[index].Y, _Basis[index].X ^ _Basis[index].Y, true);
return m;
}
///==========================================================================
void CPSEmitterRectangle::setScale(uint32 index, float scale)
{
NL_PS_FUNC(CPSEmitterRectangle_setScale)
_Width[index] = scale;
_Height[index] = scale;
}
///==========================================================================
void CPSEmitterRectangle::setScale(uint32 index, const CVector &s)
{
NL_PS_FUNC(CPSEmitterRectangle_setScale)
_Width[index] = s.x;
_Height[index] = s.y;
}
///==========================================================================
CVector CPSEmitterRectangle::getScale(uint32 index) const
{
NL_PS_FUNC(CPSEmitterRectangle_getScale)
return CVector(_Width[index], _Height[index], 1.f);
}
///==========================================================================
void CPSEmitterRectangle::newElement(const CPSEmitterInfo &info)
{
NL_PS_FUNC( CPSEmitterRectangle_newElement)
CPSEmitter::newElement(info);
newEmitteeSpeedElement(info);
_Basis.insert(CPlaneBasis(CVector::K));
_Width.insert(1.f);
_Height.insert(1.f);
}
///==========================================================================
inline void CPSEmitterRectangle::deleteElementBase(uint32 index)
{
NL_PS_FUNC(CPSEmitterRectangle_deleteElementBase)
deleteEmitteeSpeedElement(index);
_Basis.remove(index);
_Width.remove(index);
_Height.remove(index);
}
///==========================================================================
void CPSEmitterRectangle::deleteElement(uint32 index)
{
NL_PS_FUNC(CPSEmitterRectangle_deleteElement)
CPSEmitter::deleteElement(index);
deleteElementBase(index);
}
///==========================================================================
void CPSEmitterRectangle::deleteElement(uint32 index, TAnimationTime timeUntilNextSimStep)
{
NL_PS_FUNC(CPSEmitterRectangle_deleteElement)
CPSEmitter::deleteElement(index, timeUntilNextSimStep);
deleteElementBase(index);
}
///==========================================================================
void CPSEmitterRectangle::resize(uint32 size)
{
NL_PS_FUNC(CPSEmitterRectangle_resize)
nlassert(size < (1 << 16));
CPSEmitter::resize(size);
resizeEmitteeSpeed(size);
_Basis.resize(size);
_Width.resize(size);
_Height.resize(size);
}
///==========================================================================
void CPSEmitterRectangle::showTool(void)
{
NL_PS_FUNC(CPSEmitterRectangle_showTool)
nlassert(_Owner);
const uint size = _Owner->getSize();
if (!size) return;
setupDriverModelMatrix();
CMatrix mat;
CPSLocated *loc;
uint32 index;
CPSLocatedBindable *lb;
_Owner->getOwner()->getCurrentEditedElement(loc, index, lb);
for (uint k = 0; k < size; ++k)
{
const CVector &I = _Basis[k].X;
const CVector &J = _Basis[k].Y;
mat.setRot(I, J , I ^J);
mat.setPos(_Owner->getPos()[k]);
CPSUtil::displayBasis(getDriver() ,getLocalToWorldMatrix(), mat, 1.f, *getFontGenerator(), *getFontManager());
setupDriverModelMatrix();
const CRGBA col = ((lb == NULL || this == lb) && loc == _Owner && index == k ? CRGBA::Red : CRGBA(127, 127, 127));
const CVector &pos = _Owner->getPos()[k];
CPSUtil::display3DQuad(*getDriver(), pos + I * _Width[k] + J * _Height[k]
, pos + I * _Width[k] - J * _Height[k]
, pos - I * _Width[k] - J * _Height[k]
, pos - I * _Width[k] + J * _Height[k], col);
}
}
////////////////////////////////////
// CPSEmitterconic implementation //
////////////////////////////////////
///==========================================================================
void CPSEmitterConic::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSEmitterConic_serial)
f.serialVersion(1);
CPSEmitterDirectionnal::serial(f);
f.serial(_Radius);
}
///==========================================================================
void CPSEmitterConic::setDir(const CVector &v)
{
NL_PS_FUNC(CPSEmitterConic_setDir)
CPSEmitterDirectionnal::setDir(v);
}
///==========================================================================
void CPSEmitterConic::emit(const NLMISC::CVector &srcPos, uint32 index, CVector &pos, CVector &speed)
{
NL_PS_FUNC(CPSEmitterConic_emit)
// TODO : optimize that
nlassert(_EmittedType);
// we choose a custom direction like with omnidirectionnal emitter
// then we force the direction vect to have the unit size
static const double divRand = (2.0 / RAND_MAX);
CVector dir((float) (rand() * divRand - 1)
, (float) (rand() * divRand - 1)
, (float) (rand() * divRand - 1) );
const float n =dir.norm();
dir *= _Radius / n;
dir -= (_Dir * dir) * _Dir;
dir += _Dir;
dir.normalize();
speed = (_EmitteeSpeedScheme ? _EmitteeSpeedScheme->get(_Owner, index) : _EmitteeSpeed)
* dir;
pos = srcPos;
}
////////////////////////////////////////
// CPSSphericalEmitter implementation //
////////////////////////////////////////
///==========================================================================
void CPSSphericalEmitter::emit(const NLMISC::CVector &srcPos, uint32 index, CVector &pos, CVector &speed)
{
NL_PS_FUNC(CPSSphericalEmitter_emit)
static const double divRand = (2.0 / RAND_MAX);
CVector dir((float) (rand() * divRand - 1), (float) (rand() * divRand - 1) , (float) (rand() * divRand - 1) );
dir.normalize();
pos = srcPos + _Radius[index] * dir;
speed = (_EmitteeSpeedScheme ? _EmitteeSpeedScheme->get(_Owner, index) : _EmitteeSpeed) * dir;
}
///==========================================================================
void CPSSphericalEmitter::showTool(void)
{
NL_PS_FUNC(CPSSphericalEmitter_showTool)
CPSLocated *loc;
uint32 index;
CPSLocatedBindable *lb;
_Owner->getOwner()->getCurrentEditedElement(loc, index, lb);
TPSAttribFloat::const_iterator radiusIt = _Radius.begin();
TPSAttribVector::const_iterator posIt = _Owner->getPos().begin(), endPosIt = _Owner->getPos().end();
setupDriverModelMatrix();
for (uint k = 0; posIt != endPosIt; ++posIt, ++radiusIt, ++k)
{
const CRGBA col = ((lb == NULL || this == lb) && loc == _Owner && index == k ? CRGBA::Red : CRGBA(127, 127, 127));
CPSUtil::displaySphere(*getDriver(), *radiusIt, *posIt, 5, col);
}
}
///==========================================================================
void CPSSphericalEmitter::setMatrix(uint32 index, const CMatrix &m)
{
NL_PS_FUNC(CPSSphericalEmitter_setMatrix)
nlassert(index < _Radius.getSize());
// compute new pos
_Owner->getPos()[index] = m.getPos();
}
///==========================================================================
CMatrix CPSSphericalEmitter::getMatrix(uint32 index) const
{
NL_PS_FUNC(CPSSphericalEmitter_getMatrix)
nlassert(index < _Radius.getSize());
CMatrix m;
m.identity();
m.translate(_Owner->getPos()[index]);
return m;
}
///==========================================================================
void CPSSphericalEmitter::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSSphericalEmitter_serial)
f.serialVersion(1);
CPSEmitter::serial(f);
CPSModulatedEmitter::serialEmitteeSpeedScheme(f);
f.serial(_Radius);
}
///==========================================================================
void CPSSphericalEmitter::newElement(const CPSEmitterInfo &info)
{
NL_PS_FUNC(CPSSphericalEmitter_newElement)
CPSEmitter::newElement(info);
newEmitteeSpeedElement(info);
_Radius.insert(1.f);
}
///==========================================================================
inline void CPSSphericalEmitter::deleteElementBase(uint32 index)
{
NL_PS_FUNC(CPSSphericalEmitter_deleteElementBase)
deleteEmitteeSpeedElement(index);
_Radius.remove(index);
}
///==========================================================================
void CPSSphericalEmitter::deleteElement(uint32 index)
{
NL_PS_FUNC(CPSSphericalEmitter_deleteElement)
CPSEmitter::deleteElement(index);
deleteElementBase(index);
}
///==========================================================================
void CPSSphericalEmitter::deleteElement(uint32 index, TAnimationTime timeUntilNextSimStep)
{
NL_PS_FUNC(CPSSphericalEmitter_deleteElement)
CPSEmitter::deleteElement(index, timeUntilNextSimStep);
deleteElementBase(index);
}
///==========================================================================
void CPSSphericalEmitter::resize(uint32 size)
{
NL_PS_FUNC(CPSSphericalEmitter_resize)
nlassert(size < (1 << 16));
CPSEmitter::resize(size);
resizeEmitteeSpeed(size);
_Radius.resize(size);
}
/////////////////////////////////////
// CPSRadialEmitter implementation //
/////////////////////////////////////
///==========================================================================
void CPSRadialEmitter::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSRadialEmitter_serial)
f.serialVersion(1);
CPSEmitterDirectionnal::serial(f);
}
///==========================================================================
void CPSRadialEmitter::emit(const NLMISC::CVector &srcPos, uint32 index, NLMISC::CVector &pos, NLMISC::CVector &speed)
{
NL_PS_FUNC(CPSRadialEmitter_emit)
// TODO : verify if it works when a particle emits itself
nlassert(_EmittedType);
static const double divRand = (2.0 / RAND_MAX);
CVector dir((float) (rand() * divRand - 1),
(float) (rand() * divRand - 1),
(float) (rand() * divRand - 1) );
dir -= (dir * _Dir) * _Dir; //keep tangential direction
dir.normalize();
speed = (_EmitteeSpeedScheme ? _EmitteeSpeedScheme->get(_Owner, index) : _EmitteeSpeed) * dir;
pos = srcPos;
}
///===============================================================================
void CPSEmitter::enableSpeedBasisEmission(bool enabled /*=true*/)
{
NL_PS_FUNC(CPSEmitter_enableSpeedBasisEmission)
bool wasUserMatNeeded = isUserMatrixUsed();
_SpeedBasisEmission = enabled;
updatePSRefCountForUserMatrixUsage(isUserMatrixUsed(), wasUserMatNeeded);
}
///===============================================================================
void CPSEmitter::enableUserMatrixModeForEmissionDirection(bool enable /*=true*/)
{
NL_PS_FUNC(CPSEmitter_enableUserMatrixModeForEmissionDirection)
bool wasUserMatNeeded = isUserMatrixUsed();
_UserMatrixModeForEmissionDirection = enable;
updatePSRefCountForUserMatrixUsage(isUserMatrixUsed(), wasUserMatNeeded);
}
///===============================================================================
void CPSEmitter::setUserMatrixModeForEmissionDirection(TPSMatrixMode matrixMode)
{
NL_PS_FUNC(CPSEmitter_setUserMatrixModeForEmissionDirection)
bool wasUserMatNeeded = isUserMatrixUsed();
_UserDirectionMatrixMode = matrixMode;
updatePSRefCountForUserMatrixUsage(isUserMatrixUsed(), wasUserMatNeeded);
}
///==========================================================================
void CPSEmitter::updatePSRefCountForUserMatrixUsage(bool matrixIsNeededNow, bool matrixWasNeededBefore)
{
NL_PS_FUNC(CPSEmitter_updatePSRefCountForUserMatrixUsage)
if (_Owner && _Owner->getOwner())
{
if (matrixIsNeededNow && !matrixWasNeededBefore)
{
_Owner->getOwner()->addRefForUserSysCoordInfo();
}
else if (!matrixIsNeededNow && matrixWasNeededBefore)
{
_Owner->getOwner()->releaseRefForUserSysCoordInfo();
}
}
}
///==========================================================================
bool CPSEmitter::isUserMatrixUsed() const
{
NL_PS_FUNC(CPSEmitter_isUserMatrixUsed)
return !_SpeedBasisEmission && _UserMatrixModeForEmissionDirection && _UserDirectionMatrixMode == PSUserMatrix;
}
///==========================================================================
bool CPSEmitter::getUserMatrixUsageCount() const
{
NL_PS_FUNC(CPSEmitter_getUserMatrixUsageCount)
return isUserMatrixUsed() ? 1 : 0;
}
///==========================================================================
void CPSEmitter::doEmitOnce(uint firstInstanceIndex)
{
NL_PS_FUNC(CPSEmitter_doEmitOnce)
if (!_EmittedType) return;
if (!_GenNbScheme && _GenNb == 0) return;
nlassert(_Owner);
nlassert(CParticleSystem::InsideSimLoop); // should only be called by the sim loop
float emitLOD;
nlassert(_Owner);
nlassert(_Owner->getOwner());
const CParticleSystem *ps = _Owner->getOwner();
if (ps->isAutoLODEnabled() && !ps->isSharingEnabled() && !_BypassAutoLOD)
{
// temp test for auto lod
emitLOD = ps->getAutoLODEmitRatio();
}
else
{
emitLOD = 1.f;
}
nlassert(emitLOD >= 0.f);
if (_GenNbScheme)
{
const uint BATCH_SIZE = 1024;
uint32 numToEmit[BATCH_SIZE];
uint k = firstInstanceIndex;
nlassert(firstInstanceIndex < _Owner->getSize());
uint leftToDo = _Owner->getSize() - firstInstanceIndex;
while (leftToDo)
{
uint toProcess = std::min((uint) BATCH_SIZE, leftToDo);
uint32 *numToEmitPtr = (uint32 *) _GenNbScheme->make(_Owner, k, numToEmit, sizeof(uint32), true);
leftToDo -= toProcess;
while (toProcess)
{
CVector startPos;
if (!_Owner->isParametricMotionEnabled())
{
startPos = _Owner->getPos()[k] - _Owner->getSpeed()[k] * CParticleSystem::EllapsedTime;
}
else
{
startPos = _Owner->getParametricInfos()[k].Pos;
}
float currTime = _Owner->getTime()[k];
_Owner->getTime()[k] = 0.f; // when emit occurred, time was 0
sint32 nbToGenerate = (sint32) (emitLOD * *numToEmitPtr);
if (nbToGenerate > 0)
{
nbToGenerate = std::min(nbToGenerate, (sint32) _EmittedType->getMaxSize());
processEmitConsistent(startPos, k, nbToGenerate, _Owner->getAgeInSeconds(k) / CParticleSystem::RealEllapsedTimeRatio);
}
// restore time & pos
_Owner->getTime()[k] = currTime;
++ k;
++ numToEmitPtr;
-- toProcess;
}
}
}
else
{
sint nbToGenerate = (sint) (emitLOD * _GenNb);
if (nbToGenerate <= 0) nbToGenerate = 1;
nbToGenerate = std::min(nbToGenerate, (sint) _EmittedType->getMaxSize());
for(uint k = firstInstanceIndex; k < _Owner->getSize(); ++k)
{
// retrieve previous position (because motion step is done before spawn step)
CVector startPos;
if (!_Owner->isParametricMotionEnabled())
{
startPos = _Owner->getPos()[k] - _Owner->getSpeed()[k] * CParticleSystem::EllapsedTime;
}
else
{
startPos = _Owner->getParametricInfos()[k].Pos;
}
float currTime = _Owner->getTime()[k];
_Owner->getTime()[k] = 0.f; // when emit occurred, time was 0
processEmitConsistent(startPos, k, nbToGenerate, _Owner->getAgeInSeconds(k) / CParticleSystem::RealEllapsedTimeRatio);
// restore time & pos
_Owner->getTime()[k] = currTime;
}
}
}
///==========================================================================
void CPSEmitter::updateEmitTrigger()
{
NL_PS_FUNC(CPSEmitter_updateEmitTrigger)
if (!_EmitTrigger) return;
nlassert(_Owner);
nlassert(_Owner->getOwner());
const CParticleSystem *ps = _Owner->getOwner();
float emitLOD;
if (ps->isAutoLODEnabled() && !ps->isSharingEnabled() && !_BypassAutoLOD)
{
// temp test for auto lod
emitLOD = ps->getAutoLODEmitRatio();
}
else
{
emitLOD = 1.f;
}
if (_GenNbScheme)
{
const uint BATCH_SIZE = 1024;
uint32 numToEmit[BATCH_SIZE];
uint k = 0;
uint leftToDo = _Owner->getSize();
while (leftToDo)
{
uint toProcess = std::min(BATCH_SIZE, leftToDo);
uint32 *numToEmitPtr = (uint32 *) _GenNbScheme->make(_Owner, k, numToEmit, sizeof(uint32), true);
while (toProcess)
{
uint32 nbToGenerate = (sint32) (emitLOD * *numToEmitPtr);
if (!nbToGenerate) nbToGenerate = 1;
processEmit(k, nbToGenerate);
++ k;
++ numToEmitPtr;
}
leftToDo -= toProcess;
}
}
else
{
uint nbToGenerate = (sint32) (emitLOD * _GenNb);
if (!nbToGenerate) nbToGenerate = 1;
for(uint k = 0; k < _Owner->getSize(); ++k)
{
processEmit(k, nbToGenerate);
}
}
_EmitTrigger = false;
}
} // NL3D
namespace NLMISC
{
std::string toString(NL3D::CPSEmitter::TEmissionType type)
{
NL_PS_FUNC(toString_CPSEmitter_TEmissionType)
nlctassert(NL3D::CPSEmitter::numEmissionType == 5); // If this ct assertion is raised, the content of TEmissionType has changed, so should change this function !
switch (type)
{
case NL3D::CPSEmitter::regular: return "regular";
case NL3D::CPSEmitter::onDeath: return "onDeath";
case NL3D::CPSEmitter::once: return "once";
case NL3D::CPSEmitter::onBounce: return "onBounce";
case NL3D::CPSEmitter::externEmit: return "externEmit";
default:
nlassert(0);
return "";
break;
}
}
} // NLMISC