khanat-code-old/code/nel/include/nel/3d/ps_force.h
2015-12-13 20:23:08 +01:00

817 lines
24 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef NL_PS_FORCE_H
#define NL_PS_FORCE_H
#include "nel/misc/types_nl.h"
#include "nel/3d/ps_located.h"
#include "nel/3d/ps_util.h"
#include "nel/3d/ps_attrib_maker.h"
#include "nel/3d/ps_edit.h"
#include "nel/3d/ps_direction.h"
#include "nel/3d/particle_system.h"
namespace NL3D {
class CPSEmitterInfo;
/**
* All forces in the system derive from this class
* It has a list with all located on which the force can apply.
* Only the motion and toolRender passes are supported for a force.
* Not sharable accross systems.
* \author Nicolas Vizerie
* \author Nevrax France
* \date 2001
*/
class CPSForce : public CPSTargetLocatedBindable
{
public:
/// Constructor
CPSForce();
/// return this bindable type
uint32 getType(void) const { return PSForce; }
/// return priority for forces
virtual uint32 getPriority(void) const { return 4000; }
/// Override of CPSLocatedBindable::doesProduceBBox. forces usually are not part of the bbox
virtual bool doesProduceBBox(void) const { return false; }
/**
* process one pass for the force
*/
virtual void step(TPSProcessPass pass);
/// Compute the force on the targets. To be called inside the sim loop
virtual void computeForces(CPSLocated &target) = 0;
/// Show the force (edition mode)
virtual void show() = 0;
/// Serial the force definition. MUST be called by deriver during their serialisation
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
/// check whether this force is integrable over time. The default is false
virtual bool isIntegrable(void) const { return false; }
/// inherited from CPSLocatedBindableTarget, we use that to tell whether this force is integrable or not
virtual void attachTarget(CPSLocated *ptr);
/// inherited from CPSLocatedBindableTarget
void releaseTargetRsc(CPSLocated *target);
/** Integrate this force on the given located. If 'accumulate' is set to true, it just add the effect of this force on position
* otherwise, it must also integrate from the initial speed, and add this force effect. The first call to this must be done with
* 'accumulate' set to false.
* NB : works only with integrable forces
*/
virtual void integrate(float /* date */, CPSLocated * /* src */, uint32 /* startIndex */, uint32 /* numObjects */, NLMISC::CVector * /* destPos */ = NULL, NLMISC::CVector * /* destSpeed */ = NULL,
bool /* accumulate */ = false,
uint /* posStride */ = sizeof(NLMISC::CVector), uint /* speedStride */ = sizeof(NLMISC::CVector)
) const
{
nlassert(0); // not an integrable force
}
/** Compute a trajectory on several steps for a single object, rather than a step for several object.
* If the start date is lower than the creation date, the initial position is used
* NB : works only with integrable forces
*/
virtual void integrateSingle(float /* startDate */, float /* deltaT */, uint /* numStep */,
const CPSLocated * /* src */, uint32 /* indexInLocated */,
NLMISC::CVector * /* destPos */,
bool /* accumulate */ = false,
uint /* posStride */ = sizeof(NLMISC::CVector)) const
{
nlassert(0); // not an integrable force
}
protected:
friend class CPSLocated;
friend class CPSForceIntensity;
/// register integrable and non-integrable forces to the targets
void registerToTargets(void);
/// if this force is not integrable anymore, it tells that to its targets
void cancelIntegrable(void);
/// if this force has become integrable again, this method tells it to the target
void renewIntegrable(void);
/** inherited from CPSLocatedBindable. When we deal with integrable forces,
* they must be in the same basis than their target. If this change, we must notify the target of it.
*/
virtual void basisChanged(TPSMatrixMode systemBasis);
virtual void newElement(const CPSEmitterInfo &info) = 0;
/** Delete an element given its index
* Attributes of the located that hold this bindable are still accessible for of the index given
* index out of range -> nl_assert
*/
virtual void deleteElement(uint32 index) = 0;
/** Resize the bindable attributes containers DERIVERS SHOULD CALL THEIR PARENT VERSION
* should not be called directly. Call CPSLOcated::resize instead
*/
virtual void resize(uint32 size) = 0;
};
/// this is a class to set force instensity (acceleration for gravity, k coefficient for springs...)
class CPSForceIntensity
{
public:
// ctor
CPSForceIntensity() : _IntensityScheme(NULL)
{
}
virtual ~CPSForceIntensity();
/// get the constant intensity that was set for the force
float getIntensity(void) const { return _K; }
/// set a constant intensity for the force. this discard any previous call to setIntensityScheme
virtual void setIntensity(float value);
/// set a non-constant intensity
virtual void setIntensityScheme(CPSAttribMaker<float> *scheme);
// deriver have here the opportunity to setup the functor object. The default does nothing
virtual void setupFunctor(uint32 /* indexInLocated */) { }
/// get the attribute maker for a non constant intensity
CPSAttribMaker<float> *getIntensityScheme(void) { return _IntensityScheme; }
const CPSAttribMaker<float> *getIntensityScheme(void) const { return _IntensityScheme; }
void serialForceIntensity(NLMISC::IStream &f) throw(NLMISC::EStream);
protected:
/// deriver must return the located that own them here
virtual CPSLocated *getForceIntensityOwner(void) = 0;
// the intensity ...
float _K;
CPSAttribMaker<float> *_IntensityScheme;
void newForceIntensityElement(const CPSEmitterInfo &info)
{
if (_IntensityScheme && _IntensityScheme->hasMemory()) _IntensityScheme->newElement(info);
}
void deleteForceIntensityElement(uint32 index)
{
if (_IntensityScheme && _IntensityScheme->hasMemory()) _IntensityScheme->deleteElement(index);
}
void resizeForceIntensity(uint32 size)
{
if (_IntensityScheme && _IntensityScheme->hasMemory()) _IntensityScheme->resize(size, getForceIntensityOwner()->getSize());
}
};
/**
* this class defines the newElement, deleteElement, and resize method of a class that derives from CPSForceIntensity
* And that don't add per paerticle attribute
*/
class CPSForceIntensityHelper : public CPSForce, public CPSForceIntensity
{
public:
void serial(NLMISC::IStream &f) throw(NLMISC::EStream) ;
protected:
virtual CPSLocated *getForceIntensityOwner(void) { return _Owner; }
virtual void newElement(const CPSEmitterInfo &info) { newForceIntensityElement(info); }
virtual void deleteElement(uint32 index) { deleteForceIntensityElement(index); }
virtual void resize(uint32 size) { resizeForceIntensity(size); }
};
/** a helper class to create isotropic force : they are independant of the basis, and have no position
* (fluid friction for example)
* To use this class you should provide to it a functor class that define the () operator with 3 parameters
* param1 = a const reference to the position of the particle
* param2 = a reference to the position, that must be updated
* param3 = a float giving the inverse of the mass
* param4 = the ellapsed time, in second (has the TAnimationTime type).
* Example of use :
* class MyForceFunctor
* {
* public:
* /// it is strongly recommended to have your operator inlined
* void operator() (const NLMISC::CVector &pos, NLMISC::CVector &speed, float invMass , CanimationTime ellapsedTime)
* {
* // perform the speed update there
* }
*
* // you can provide a serialization method. Note that that if the functor parameters are set before each use,
* // it useless to serial something ...
* void serial(NLMISC::IStream &f) throw(NLMISC::EStream)
*
* protected:
* ...
* };
*
*
* because of the serialization process, you must proceed like the following. (but you don't need to redefine serial, which
* will serilize the functor object you passed for you
*
* class MyForce : public CHomogenousForceT<MyForceFunctor>
* {
* public:
* MyForce();
* NLMISC_DECLARE_CLASS(Myforce);
*
* protected:
* ...
*
* };
*
*
* not that each functor may have its own parameter. the setupFunctor method will be called each time
*/
template <class T> class CIsotropicForceT : public CPSForce
{
public:
/// Compute the force on the targets
virtual void computeForces(CPSLocated &target);
/// serialization
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
f.serialVersion(1);
CPSForce::serial(f);
f.serial(_F); // serial the functor object 5does nothing most of the time ...)
}
/** Show the force (edition mode). The default does nothing
* TODO later
*/
void show() {}
/// setup the functor object. The default does nothing
virtual void setupFunctor(uint32 /* index */) {}
protected:
/// the functor object
T _F;
virtual void newElement(const CPSEmitterInfo &/* info */) {}
virtual void deleteElement(uint32 /* index */) {}
virtual void resize(uint32 /* size */) {}
};
//////////////////////////////////////////////////////////////////////
// implementation of method of the template class CHomogenousForceT //
//////////////////////////////////////////////////////////////////////
template <class T> void CIsotropicForceT<T>::computeForces(CPSLocated &target)
{
nlassert(CParticleSystem::InsideSimLoop);
for (uint32 k = 0; k < _Owner->getSize(); ++k)
{
setupFunctor(k);
TPSAttribVector::iterator speedIt = target.getSpeed().begin(), endSpeedIt = target.getSpeed().end();
TPSAttribVector::const_iterator posIt = target.getPos().begin();
TPSAttribFloat::const_iterator invMassIt = target.getInvMass().begin();
for (; speedIt != endSpeedIt; ++speedIt, ++posIt, ++invMassIt)
{
_F(*posIt, *speedIt, *invMassIt);
}
}
}
/**
* a force that has the same direction everywhere. Mass is also taken in account (which is not the case for gravity)
*/
class CPSDirectionnalForce : public CPSForceIntensityHelper, public CPSDirection
{
public:
/// Compute the force on the targets
virtual void computeForces(CPSLocated &target);
/// Show the force (edition mode)
virtual void show();
CPSDirectionnalForce(float i = 1.f)
{
if (CParticleSystem::getSerializeIdentifierFlag()) _Name = std::string("DirectionnalForce");
setIntensity(i);
_Dir = NLMISC::CVector(0, 0, -1);
}
/// serialization
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
NLMISC_DECLARE_CLASS(CPSDirectionnalForce);
///\name From CPSDirection
//@{
/// set the direction of the force
virtual void setDir(const NLMISC::CVector &dir) { _Dir = dir; }
/// get the direction of the force
virtual NLMISC::CVector getDir(void) const { return _Dir; }
// Tells that a global vector value of the system can be used as a direction
virtual bool supportGlobalVectorValue() const { return true; }
/// Bind the direction to a global vaariable (e.g "WIND" ). The value can be changed in CParticleSystem::setGlobalVectorValue
virtual void enableGlobalVectorValue(const std::string &name);
// See if the direction is bound to a global variable. Return an empty string if not
virtual std::string getGlobalVectorValueName() const;
//@}
protected:
NLMISC::CVector _Dir;
CParticleSystem::CGlobalVectorValueHandle _GlobalValueHandle; // a global vector value may override the value of _Dir (example of use : global direction for wind)
};
/// a gravity class. Mass isn't taken in account (true with a uniform gravity model, near earth )
class CPSGravity : public CPSForceIntensityHelper
{
public:
/// Compute the force on the targets
virtual void computeForces(CPSLocated &target);
/// Show the force (edition mode)
virtual void show();
CPSGravity(float g = 9.8f)
{
if (CParticleSystem::getSerializeIdentifierFlag()) _Name = std::string("Gravity");
setIntensity(g);
}
/// serialization
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
NLMISC_DECLARE_CLASS(CPSGravity);
virtual bool isIntegrable(void) const;
/// inherited from CPSForce
virtual void integrate(float date, CPSLocated *src, uint32 startIndex, uint32 numObjects, NLMISC::CVector *destPos = NULL, NLMISC::CVector *destSpeed = NULL,
bool accumulate = false,
uint posStride = sizeof(NLMISC::CVector), uint speedStride = sizeof(NLMISC::CVector)
) const;
virtual void integrateSingle(float startDate, float deltaT, uint numStep,
const CPSLocated *src, uint32 indexInLocated,
NLMISC::CVector *destPos,
bool accumulate = false,
uint posStride = sizeof(NLMISC::CVector)) const;
protected:
/// inherited from CPSForceIntensityHelper
virtual void setIntensity(float value);
/// inherited from CPSForceIntensityHelper
virtual void setIntensityScheme(CPSAttribMaker<float> *scheme);
};
/// a central gravity class. Mass is taken in account here
class CPSCentralGravity : public CPSForceIntensityHelper
{
public:
/// Compute the force on the targets
virtual void computeForces(CPSLocated &target);
/// Show the force (edition mode)
virtual void show();
CPSCentralGravity(float i = 1.f)
{
if (CParticleSystem::getSerializeIdentifierFlag()) _Name = std::string("CentralGravity");
setIntensity(i);
}
/// serialization
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
NLMISC_DECLARE_CLASS(CPSCentralGravity);
};
/// a spring class
class CPSSpring : public CPSForceIntensityHelper
{
public:
/// ctor : k is the coefficient of the spring
CPSSpring(float k = 1.0f)
{
if (CParticleSystem::getSerializeIdentifierFlag()) _Name = std::string("Spring");
setIntensity(k);
}
/// serialization
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
/// Compute the force on the targets
virtual void computeForces(CPSLocated &target);
/// Show the force (edition mode)
virtual void show();
NLMISC_DECLARE_CLASS(CPSSpring);
};
/// a fluid friction functor, it is used by the fluid friction class
class CPSFluidFrictionFunctor
{
public:
CPSFluidFrictionFunctor() : _K(1.f)
{
}
virtual ~CPSFluidFrictionFunctor() {}
#ifdef NL_OS_WINDOWS
__forceinline
#endif
void operator() (const NLMISC::CVector &/* pos */, NLMISC::CVector &speed, float invMass)
{
speed -= (CParticleSystem::EllapsedTime * _K * invMass * speed);
}
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
f.serialVersion(1);
// we don't save intensity info : it is saved by the owning object (and set before each use of this functor)
}
// get the friction coefficient
float getK(void) const { return _K; }
// set the friction coefficient
void setK(float coeff) { _K = coeff; }
protected:
// the friction coeff
float _K;
};
/** the fluid friction force. We don't derive from CPSForceIntensityHelper (which derives from CPSForce
* , because CIsotropicForceT also derives from CPSForce, and we don't want to use virtual inheritance
*/
class CPSFluidFriction : public CIsotropicForceT<CPSFluidFrictionFunctor>, public CPSForceIntensity
{
public:
// create the force with a friction coefficient
CPSFluidFriction(float frictionCoeff = 1.f)
{
setIntensity(frictionCoeff);
if (CParticleSystem::getSerializeIdentifierFlag()) _Name = std::string("FluidFriction");
}
// inherited from CIsotropicForceT
virtual void setupFunctor(uint32 index)
{
_F.setK(_IntensityScheme ? _IntensityScheme->get(_Owner, index) : _K);
}
NLMISC_DECLARE_CLASS(CPSFluidFriction)
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
f.serialVersion(1);
CIsotropicForceT<CPSFluidFrictionFunctor>::serial(f);
serialForceIntensity(f);
if (f.isReading())
{
registerToTargets();
}
}
protected:
virtual CPSLocated *getForceIntensityOwner(void) { return _Owner; }
virtual void newElement(const CPSEmitterInfo &info) { newForceIntensityElement(info); }
virtual void deleteElement(uint32 index) { deleteForceIntensityElement(index); }
virtual void resize(uint32 size) { resizeForceIntensity(size); }
};
/** A Brownian motion
*/
class CPSBrownianForce : public CPSForceIntensityHelper
{
public:
// create the force with a friction coefficient
CPSBrownianForce(float intensity = 1.f);
NLMISC_DECLARE_CLASS(CPSBrownianForce)
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
/// We provide a kind of integration on a predefined sequence
virtual bool isIntegrable(void) const;
virtual void integrate(float date, CPSLocated *src, uint32 startIndex, uint32 numObjects, NLMISC::CVector *destPos = NULL, NLMISC::CVector *destSpeed = NULL,
bool accumulate = false,
uint posStride = sizeof(NLMISC::CVector), uint speedStride = sizeof(NLMISC::CVector)
) const;
virtual void integrateSingle(float startDate, float deltaT, uint numStep,
const CPSLocated *src, uint32 indexInLocated,
NLMISC::CVector *destPos,
bool accumulate = false,
uint posStride = sizeof(NLMISC::CVector)) const;
/// perform initialisations
static void initPrecalc();
void setIntensity(float value);
void setIntensityScheme(CPSAttribMaker<float> *scheme);
/// Compute the force on the targets
virtual void computeForces(CPSLocated &target);
void show() {}
/** When used with parametric integration, this tells factor tells how fast the force acts on particle
* (how fast it go through the lookup table in fact)
*/
void setParametricFactor(float factor) { _ParametricFactor = factor; }
float getParametricFactor() const { return _ParametricFactor; }
protected:
virtual CPSLocated *getForceIntensityOwner(void) { return _Owner; }
virtual void newElement(const CPSEmitterInfo &info) { newForceIntensityElement(info); }
virtual void deleteElement(uint32 index) { deleteForceIntensityElement(index); }
virtual void resize(uint32 size) { resizeForceIntensity(size); }
float _ParametricFactor; // tells how fast this force act on a particle when parametric motion is used
static NLMISC::CVector PrecomputedPos[]; // after the sequence we must be back to the start position
static NLMISC::CVector PrecomputedSpeed[];
/// various impulsion for normal motion
static NLMISC::CVector PrecomputedImpulsions[];
};
/// a turbulence force functor
struct CPSTurbulForceFunc
{
virtual ~CPSTurbulForceFunc() {}
#ifdef NL_OS_WINDOWS
__forceinline
#endif
void operator() (const NLMISC::CVector &/* pos */, NLMISC::CVector &/* speed */, float /* invMass */)
{
nlassert(0);
// TODO : complete that
/* static const NLMISC::CVector v1(1.235f, - 45.32f, 157.5f);
static const NLMISC::CVector v2(-0.35f, 7.77f, 220.77f);
speed += ellapsedTime * _Intensity
* NLMISC::CVector(2.f * (-0.5f + CPSUtil::buildPerlinNoise(_Scale * pos, _NumOctaves))
, 2.f * (-0.5f + CPSUtil::buildPerlinNoise(_Scale * (pos + v1) , _NumOctaves))
, 2.f * (-0.5f + CPSUtil::buildPerlinNoise(_Scale * (pos + v2) , _NumOctaves))
);
*/
}
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
f.serialVersion(1);
f.serial(_Scale, _NumOctaves);
}
float _Scale;
float _Intensity;
uint32 _NumOctaves;
};
// the turbulence force
class CPSTurbul : public CIsotropicForceT<CPSTurbulForceFunc>, public CPSForceIntensity
{
public:
// create the force with a friction coefficient
CPSTurbul(float scale = 1.f , uint numOctaves = 4)
{
nlassert(numOctaves > 0);
setScale(scale);
setNumOctaves(numOctaves);
if (CParticleSystem::getSerializeIdentifierFlag()) _Name = std::string("Turbulence");
}
float getScale(void) const { return _F._Scale; }
void setScale(float scale) { _F._Scale = scale; }
uint getNumOctaves(void) const { return _F._NumOctaves; }
void setNumOctaves(uint numOctaves) { _F._NumOctaves = numOctaves; }
NLMISC_DECLARE_CLASS(CPSTurbul)
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
f.serialVersion(1);
CIsotropicForceT<CPSTurbulForceFunc>::serial(f);
serialForceIntensity(f);
if (f.isReading())
{
registerToTargets();
}
}
// inherited from CIsotropicForceT
virtual void setupFunctor(uint32 index)
{
_F._Intensity = (_IntensityScheme ? _IntensityScheme->get(_Owner, index) : _K);
}
protected:
virtual CPSLocated *getForceIntensityOwner(void) { return _Owner; }
virtual void newElement(const CPSEmitterInfo &info) { newForceIntensityElement(info); }
virtual void deleteElement(uint32 index) { deleteForceIntensityElement(index); }
virtual void resize(uint32 size) { resizeForceIntensity(size); }
};
/** a cylindric vortex. It has a limited extend
* It has unlimited extension in the z direction
* The model is aimed at tunability rather than realism
*/
class CPSCylindricVortex : public CPSForceIntensityHelper, public IPSMover
{
public:
/// Compute the force on the targets
virtual void computeForces(CPSLocated &target);
/// Show the force (edition mode)
virtual void show();
CPSCylindricVortex(float intensity = 1.f) : _RadialViscosity(.1f), _TangentialViscosity(.1f)
{
setIntensity(intensity);
if (CParticleSystem::getSerializeIdentifierFlag()) _Name = std::string("Cylindric Vortex");
}
// inherited from IPSMover
virtual bool supportUniformScaling(void) const { return true; }
virtual bool supportNonUniformScaling(void) const { return false; }
virtual void setScale(uint32 k, float scale) { _Radius[k] = scale; }
virtual NLMISC::CVector getScale(uint32 k) const { return NLMISC::CVector(_Radius[k], _Radius[k], _Radius[k]); }
virtual bool onlyStoreNormal(void) const { return true; }
virtual NLMISC::CVector getNormal(uint32 index) { return _Normal[index]; }
virtual void setNormal(uint32 index, NLMISC::CVector n) { _Normal[index] = n; }
virtual void setMatrix(uint32 index, const NLMISC::CMatrix &m);
virtual NLMISC::CMatrix getMatrix(uint32 index) const;
void setRadialViscosity(float v) { _RadialViscosity = v; }
float getRadialViscosity(void) const { return _RadialViscosity; }
void setTangentialViscosity(float v) { _TangentialViscosity = v; }
float getTangentialViscosity(void) const { return _TangentialViscosity; }
NLMISC_DECLARE_CLASS(CPSCylindricVortex);
// serialization
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
protected:
/// inherited from CPSForceIntensity
virtual CPSLocated *getForceIntensityOwner(void) { return _Owner; }
// the normal of the vortex
CPSAttrib<NLMISC::CVector> _Normal;
// radius of the vortex
TPSAttribFloat _Radius;
// radial viscosity : when it is near of 1, if tends to set the radial componenent of speed to 0
float _RadialViscosity;
// tangential viscosity : when set to 1, the tangential speed immediatly reach what it would be in a real vortex (w = 1 / r2)
float _TangentialViscosity;
virtual void newElement(const CPSEmitterInfo &info);
virtual void deleteElement(uint32 index);
virtual void resize(uint32 size);
};
/**
* a magnetic field that has the given direction
*/
class CPSMagneticForce : public CPSDirectionnalForce
{
public:
CPSMagneticForce(float i = 1.f) : CPSDirectionnalForce(i)
{
if (CParticleSystem::getSerializeIdentifierFlag()) _Name = std::string("MagneticForce");
}
virtual void computeForces(CPSLocated &target);
/// serialization
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
NLMISC_DECLARE_CLASS(CPSMagneticForce);
};
} // NL3D
#endif // NL_PS_FORCE_H
/* End of ps_force.h */