khanat-code-old/code/nel/include/nel/3d/ps_mesh.h
2010-11-12 14:26:38 +01:00

615 lines
22 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef NL_PS_MESH_H
#define NL_PS_MESH_H
#include "nel/misc/types_nl.h"
#include "nel/misc/class_registry.h"
#include "nel/3d/ps_particle_basic.h"
#include "nel/3d/ps_attrib.h"
#include "nel/3d/ps_plane_basis.h"
#include "nel/3d/vertex_buffer.h"
#include "nel/3d/material.h"
#include "nel/3d/index_buffer.h"
#include "nel/3d/shape.h"
#include "nel/3d/mesh.h"
#include "nel/3d/particle_system.h"
#include <string>
#include <vector>
#include <queue>
namespace NLMISC
{
class IStream;
struct EStream;
}
namespace NL3D {
class CPSLocated;
class CTransformShape;
class CShapeBank;
const uint ConstraintMeshMaxNumVerts = 512; // the maximum number of vertices for a constraint mesh
const uint ConstraintMeshBufSize = 64; // number of meshs to be processed at once...
const uint ConstraintMeshMaxNumPrerotatedModels = 32; // maximum number of meshs that can be prerotated
/** This class is for mesh handling. It operates with any mesh, but it must insert them in the scene...
* It is not very adapted for lots of little meshs..
* To create the mesh basis, we use CPlaneBasis here. It give us the I and J vector of the basis for each mesh
* and compute K ( K = I ^ J)
*/
class CPSMesh : public CPSParticle,
public CPSSizedParticle,
public CPSRotated3DPlaneParticle,
public CPSRotated2DParticle,
public CPSShapeParticle
{
public:
/// construct the system by using the given shape for mesh
CPSMesh(const std::string &shape = "")
{
_Shape = shape;
if (CParticleSystem::getSerializeIdentifierFlag()) _Name = std::string("Mesh");
}
/// set a new shape for that kind of particles
void setShape(const std::string &shape);
/// get the shape used for those particles
std::string getShape(void) const { return _Shape; }
/// serialisation. Derivers must override this, and call their parent version
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
virtual ~CPSMesh();
NLMISC_DECLARE_CLASS(CPSMesh);
/// return true if there are transparent faces in the object
virtual bool hasTransparentFaces(void);
/// return true if there are Opaque faces in the object
virtual bool hasOpaqueFaces(void);
/// from CPSParticle : return true if there are lightable faces in the object
virtual bool hasLightableFaces();
/// return the max number of faces needed for display. This is needed for LOD balancing
virtual uint32 getNumWantedTris() const;
// from CPSParticle
virtual bool supportGlobalColorLighting() const { return false; }
// from CPSParticle. No-op for meshs virtual float getZBias() { return 0.f; }
virtual void setZBias(float value) {}
virtual float getZBias() const { return 0.f; }
// from CPSLocatedBindable
virtual void onShow(bool shown);
protected:
/** Generate a new element for this bindable. They are generated according to the properties of the class
*/
virtual void newElement(const CPSEmitterInfo &info);
/** Delete an element given its index
* Attributes of the located that hold this bindable are still accessible for the index given
* index out of range -> nl_assert
*/
virtual void deleteElement(uint32 index);
virtual void step(TPSProcessPass pass);
/// in fact we don't draw the meshs, we just update their pos...
virtual void updatePos();
/** Resize the bindable attributes containers. Size is the max number of element to be contained. DERIVERS MUST CALL THEIR PARENT VERSION
* should not be called directly. Call CPSLocated::resize instead
*/
virtual void resize(uint32 size);
//CSmartPtr<IShape> _Shape;
std::string _Shape;
// a container for mesh instances
typedef CPSAttrib<CTransformShape *> TInstanceCont;
TInstanceCont _Instances;
virtual CPSLocated *getSizeOwner(void) { return _Owner; }
virtual CPSLocated *getAngle2DOwner(void) { return _Owner; }
virtual CPSLocated *getPlaneBasisOwner(void) { return _Owner; }
void releaseAllRef();
// create an instance of the current shape, or a dummy mesh if not found
// NB : the object is hidden at start
CTransformShape *createInstance();
// remove all instance from scene and set their pointer to NULL
void removeAllInstancesFromScene();
};
/** This class is for mesh that have very simple geometry. The constraint is that they can only have one matrix block.
* They got a hint for constant rotation scheme. With little meshs, this is the best to draw a maximum of them
*/
class CPSConstraintMesh : public CPSParticle,
public CPSSizedParticle,
public CPSRotated3DPlaneParticle,
public CPSHintParticleRotateTheSame,
public CPSShapeParticle,
public CPSColoredParticle
{
public:
// errors during loading of meshs
enum TError { ShapeFileNotLoaded = -1, ShapeFileIsNotAMesh = -2, ShapeHasTooMuchVertices = -3 };
public:
/// ctor
CPSConstraintMesh();
virtual ~CPSConstraintMesh();
/** Construct the mesh by using the given mesh shape file.
* No morphing is applied. The mesh is used 'as it'.
*/
void setShape(const std::string &meshFileName);
/// Get the shape used for those particles. (must use no morphing or an assertion is raised)
std::string getShape(void) const;
/** Setup the mesh for morphing use. There are several restrictions :
* - All meshs must have the same number of vertices
* - All meshes must have the same vertex format
* If these conditions are not met, a 'dummy' mesh will be used instead.
* If there's only one mesh, no morphing is performed.
* NB : Morphing not supported with precomputed rotations. First mesh is used instead
* \param shapesNames A tab of string containing the names of the shapes
* \param numShapes
*/
void setShapes(const std::string *shapesNames, uint numShapes);
/// Set a shape by its index
void setShape(uint index, const std::string &shapeName);
/// Get a shape name by its index
const std::string &getShape(uint index) const;
/// Get the number of shapes used
uint getNumShapes() const;
/** Retrieve the names of the shapes
* \param shapesNames :A tab of shapes with enough spaces to store the names
*/
void getShapesNames(std::string *shapesNames) const;
/// Use a constant value for morphing. This discard any scheme for the morph value. The value must range from 0 to numberOfShapes
void setMorphValue(float value);
/// Get the value used for morphing
float getMorphValue() const;
/// Set a morphing scheme. The scheme is then owned by this object
void setMorphScheme(CPSAttribMaker<float> *scheme);
/// Get the current morphing scheme or NULL if no one was set
CPSAttribMaker<float> *getMorphScheme();
/// Get the current morphing scheme or NULL if no one was set. Const version
const CPSAttribMaker<float> *getMorphScheme() const;
/** Tells that all meshs are turning in the same manner, and only have a rotationnal bias
* This is a lot faster then other method. Any previous set scheme for 3d rotation is kept.
* \param: the number of rotation configuration we have. The more high it is, the slower it'll be
* If this is too low, a lot of particles will have the same orientation
* If it is 0, then the hint is disabled.
* This can't be higher than ConstraintMeshMaxNumPrerotatedModels
* \param minAngularVelocity : the maximum angular velocity for particle rotation
* \param maxAngularVelocity : the maximum angular velocity for particle rotation
* \see CPSRotated3dPlaneParticle
*/
void hintRotateTheSame(uint32 nbConfiguration,
float minAngularVelocity = NLMISC::Pi,
float maxAngularVelocity = NLMISC::Pi
);
/** disable the hint 'hintRotateTheSame'
* The previous set scheme for roation is used
* \see hintRotateTheSame(), CPSRotated3dPlaneParticle
*/
void disableHintRotateTheSame(void)
{
hintRotateTheSame(0);
}
/** check whether a call to hintRotateTheSame was performed
* \return 0 if the hint is disabled, the number of configurations else
* \see hintRotateTheSame(), CPSRotated3dPlaneParticle
*/
uint32 checkHintRotateTheSame(float &min, float &max) const
{
min = _MinAngularVelocity;
max = _MaxAngularVelocity;
return (uint32)_PrecompBasis.size();
}
/// serialisation. Derivers must override this, and call their parent version
virtual void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
NLMISC_DECLARE_CLASS(CPSConstraintMesh);
/// return true if there are transparent faces in the object
virtual bool hasTransparentFaces(void);
/// return true if there are Opaque faces in the object
virtual bool hasOpaqueFaces(void);
/// from CPSParticle : return true if there are lightable faces in the object
virtual bool hasLightableFaces();
/// return the max number of faces needed for display. This is needed for LOD balancing
virtual uint32 getNumWantedTris() const;
/** Force the n-th stage of all material to be modulated by the mesh color. This allow to put colors on meshs
* that haven't got material that allow them.
* \param stage The stage the modulation applies on. Range from 0 to IDRV_MAT_MAXTEXTURES - 1.
* \param force True enable modulation, false disable it.
*/
void forceStageModulationByColor(uint stage, bool force);
/// Test if the i-th stage of all materials is forced to be modulated with the mesh color
bool isStageModulationForced(uint stage) const;
/// force all material to use vertex color lighting
void forceVertexColorLighting(bool force = true) { _VertexColorLightingForced = force; }
/// test whether vertex color lighting is forced.
bool isVertexColorLightingForced() const { return _VertexColorLightingForced; }
/// Setup the buffers used with prerotated meshs. Must be called during initialization.
static void initPrerotVB();
//\name Texture animation
//@{
/// The type of animation that is used with meshs textures.
enum TTexAnimType { NoAnim = 0, GlobalAnim, /*Local, */ Last};
/// Set the type of texture animation to use. None is the default. Setting a new value discard the previous change.
void setTexAnimType(TTexAnimType type);
/// Get the type of texture animation
TTexAnimType getTexAnimType() const;
//@}
//\name Global texture animation. Calls to these method are only valid if texture animation is global.
//@{
/// Properties of global texture animation
struct CGlobalTexAnim
{
NLMISC::CVector2f TransOffset; /* = (0, 0) */
NLMISC::CVector2f TransSpeed; /* = (0, 0) */
NLMISC::CVector2f TransAccel; /* = (0, 0) */
NLMISC::CVector2f ScaleStart; /* = (1, 1) */
NLMISC::CVector2f ScaleSpeed; /* = (0, 0) */
NLMISC::CVector2f ScaleAccel; /* = (0, 0) */
float WRotSpeed; /* = 0 */
float WRotAccel; /* = 0 */
CGlobalTexAnim();
void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
/// Build a texture matrix from a date and this obj.
void buildMatrix(TAnimationTime date, NLMISC::CMatrix &dest);
};
/// Set the properties of texture animation for a texture stage. Global animation should have been activated.
void setGlobalTexAnim(uint stage, const CGlobalTexAnim &properties);
/// Get the properties of texture animation.Global animation should have been activated.
const CGlobalTexAnim &getGlobalTexAnim(uint stage) const;
/// Force the time counter for global anim to be reseted when a new mesh is created.
void forceGlobalAnimTimeResetOnNewElement(bool force = true) { _ReinitGlobalAnimTimeOnNewElement = force; }
bool isGlobalAnimTimeResetOnNewElementForced() const { return _ReinitGlobalAnimTimeOnNewElement != 0; }
//@}
/** test if mesh is correctly loaded and built (e.g all shape have been loaded and have compatible format)
* * NB : this force the meshs to be loaded
*/
bool isValidBuild() const;
/** get number of vertices for each mesh, or an error code if loading failed (see TError enum)
* NB : this force the meshs to be reloaded
*/
void getShapeNumVerts(std::vector<sint> &numVerts);
// from CPSParticle
virtual bool supportGlobalColorLighting() const { return false; }
// from CPSParticle. No-op for meshs
virtual void setZBias(float value) {}
virtual float getZBias() const { return 0.f; }
protected:
friend class CPSConstraintMeshHelper;
// inherited from CPSColoredParticle
virtual CPSLocated *getColorOwner(void) { return _Owner; }
// inherited from CPSColoredParticle
virtual void updateMatAndVbForColor(void);
/** Generate a new element.
*/
virtual void newElement(const CPSEmitterInfo &info);
/** Delete an element by its index
*/
virtual void deleteElement(uint32 index);
virtual void step(TPSProcessPass pass);
/** called by the system when particles must be drawn
* \param opaque true if we are dealing with the opaque pass, false for transparent faces
*/
void draw(bool opaque);
/// draw for pre-rotated meshs
void drawPreRotatedMeshs(bool opaque);
/// release the shapes used by this particle
void releaseShapes();
/** Compute (optional) mesh colors.
* \param startIndex Index of the mesh being processed
* \param toProcess Number of meshs to process
*/
void computeColors(CVertexBuffer &outVB, const CVertexBuffer &inVB, uint startIndex, uint toProcess, uint32 srcStep, IDriver &drv, CVertexBufferReadWrite &vba, CVertexBufferRead &vbaIn);
/** Resize the bindable attributes containers. Size is the max number of element to be contained. DERIVERS MUST CALL THEIR PARENT VERSION
* should not be called directly. Call CPSLocated::resize instead
*/
virtual void resize(uint32 size);
/** Build the mesh data, if the 'touch' flag is set.
* \param numVerts, if not NULL, the dest vector will be filled with the number of vertices of each mesh (or a TError enumerated value if loading failed)
* \return true if the mesh could be found and match the requirement
*/
bool update(std::vector<sint> *numVerts = NULL);
/// make a vb for the prerotated mesh from a source vb
CVertexBuffer &makePrerotatedVb(const CVertexBuffer &inVB);
/** A rendering pass. The primitive block contains several duplication of the primitives of the original mesh, in order
* to draw several of them at once
*/
class CRdrPass
{
public:
CMaterial Mat;
CMaterial SourceMat;
CIndexBuffer PbLine;
CIndexBuffer PbTri;
public:
CRdrPass()
{
NL_SET_IB_NAME(PbLine, "CPSMesh::CRdrPass::PbLine");
NL_SET_IB_NAME(PbLine, "CPSMesh::CRdrPass::PbTri");
PbTri.setFormat(NL_DEFAULT_INDEX_BUFFER_FORMAT);
PbLine.setFormat(NL_DEFAULT_INDEX_BUFFER_FORMAT);
}
};
/// A set of rendering pass.
typedef std::vector<CRdrPass> TRdrPassSet;
/// a set of rendering pass, and the associated vertex buffer
class CMeshDisplay
{
public:
TRdrPassSet RdrPasses;
CVertexBuffer VB;
public:
CMeshDisplay()
{
VB.setName("CPSConstraintMesh::CMeshDisplay");
}
};
void restoreMaterials();
/// Setup a set of rendering passes (set good textures matrix / material colors)
void setupRenderPasses(float date, TRdrPassSet &rdrPasses, bool opaque);
/// Perform a set of rendering passes. The VB must have been activated in the driver before to call this
void doRenderPasses(IDriver *driver, uint numObj, TRdrPassSet &rdrPasses, bool opaque);
typedef NLMISC::CSmartPtr<CMesh> PMesh;
typedef CPSVector<std::string>::V TMeshNameVect;
typedef CPSVector<PMesh>::V TMeshVect;
typedef CPSVector<const CVertexBuffer *>::V TVertexBufferVect;
// name of the shapes being used by this particle mesh.
TMeshNameVect _MeshShapeFileName;
TMeshVect _Meshes;
TVertexBufferVect _MeshVertexBuffers;
// caches the number of faces (for load balacing)
uint _NumFaces;
// the shape bank containing the shape
CShapeBank *_ModelBank;
/** This class manage sharing between several mesh displays.
* There can be a limited number of them at a given time.
*/
class CMeshDisplayShare
{
public:
/// ctor giving the max number of CMeshDisplay structures to be kept simultaneously.
CMeshDisplayShare(uint maxNumMD) : _MaxNumMD(maxNumMD), _NumMD(0) {}
// Retrieve a mesh display associated with the given mesh
CMeshDisplay &getMeshDisplay(CMesh *mesh, const CVertexBuffer &meshVB, uint32 format);
private:
struct CMDEntry
{
CMesh *Mesh;
uint32 Format;
CMeshDisplay MD;
};
uint _MaxNumMD;
uint _NumMD;
std::list<CMDEntry> _Cache;
/// build a set of render pass from a mesh
static void buildRdrPassSet(TRdrPassSet &dest, const CMesh &mesh);
/// Build a vb from a shape. The format can add an additionnal color
static void buildVB(CVertexBuffer &dest, const CVertexBuffer &meshVB, uint32 format);
};
friend class CMeshDisplayShare;
/// manage vertex buffers and primitive blocks used for rendering
static CMeshDisplayShare _MeshDisplayShare;
/** Map a mesh name to its ram vb
* If a mesh has been already setupped in the driver for another use than particle system meshes.
* then locking it will return us an agp or vram pointer, which is baaad because we are reading from it
* when writing each instance to the final vb.
* This maps a mesh name, to its ram vb
* NB / TODO Nico : would greatly benefits from real instancing using SetStreamFreq (this code was originally written in 2001 ...) ...
* TODO 2 : get rid of all theses statics !!! move then in scene at least (ideally in a render context or something similar, because
* it may be shared between several scenes)
*/
typedef std::map<std::string, CVertexBuffer> TMeshName2RamVB;
static TMeshName2RamVB _MeshRamVBs;
/// vertex buffer used with prerotated meshs
static CVertexBuffer _PreRotatedMeshVB; // mesh has no normals
static CVertexBuffer _PreRotatedMeshVBWithNormal; // mesh has normals
// we must store them for serialization
float _MinAngularVelocity;
float _MaxAngularVelocity;
// use for rotation of precomputed meshs
struct CPlaneBasisPair
{
CPlaneBasis Basis;
CVector Axis; // an axis for rotation
float AngularVelocity; // an angular velocity
};
/// a set of precomp basis, before and after transfomation in world space, used if the hint 'RotateTheSame' has been called
CPSVector<CPlaneBasisPair>::V _PrecompBasis;
/// this contain an index in _PrecompBasis for each particle
CPSVector<uint32>::V _IndexInPrecompBasis;
/// fill _IndexInPrecompBasis with index in the range [0.. nb configurations[
void fillIndexesInPrecompBasis(void);
// release the model shape (dtor, or before loading)
void clean(void);
virtual CPSLocated *getSizeOwner(void) { return _Owner; }
virtual CPSLocated *getPlaneBasisOwner(void) { return _Owner; }
/** Setup material so that global or per mesh color is taken in account. Useful if material hasn't been setup correctly in the export
*/
void setupMaterialColor(CMaterial &destMat, CMaterial &srcMat);
// Get a mesh vb from its index into the list of vbs.
const CVertexBuffer &getMeshVB(uint index);
/// A 'bitfield' to force some stage to be modulated with the primary color
uint8 _ModulatedStages;
// A new mesh has been set, so we must reconstruct it when needed
uint8 _Touched : 1;
// flags that indicate whether the object has transparent faces. When the 'touch' flag is set, it is undefined, until the next update() call.
uint8 _HasTransparentFaces : 1;
// flags that indicate whether the object has opaques faces. When the 'touch' flag is set, it is undefined, until the next update() call.
uint8 _HasOpaqueFaces : 1;
uint8 _VertexColorLightingForced : 1;
uint8 _GlobalAnimationEnabled : 1;
uint8 _ReinitGlobalAnimTimeOnNewElement : 1;
uint8 _HasLightableFaces : 1;
uint8 _ValidBuild : 1;
/// Infos for global texture animation
struct CGlobalTexAnims
{
CGlobalTexAnim Anims[IDRV_MAT_MAXTEXTURES];
void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
};
typedef std::auto_ptr<CGlobalTexAnims> PGlobalTexAnims;
PGlobalTexAnims _GlobalTexAnims;
float _GlobalAnimDate;
/// \name morphing
//@{
float _MorphValue;
CPSAttribMaker<float> *_MorphScheme;
//@}
private:
CPSConstraintMesh(const CPSConstraintMesh &) : CPSParticle(), CPSSizedParticle(), CPSRotated3DPlaneParticle(), CPSHintParticleRotateTheSame(), CPSShapeParticle(), CPSColoredParticle() { nlassert(0); /* not supported */ }
CPSConstraintMesh &operator = (const CPSConstraintMesh &other) { nlassert(0); return *this; /* not supported */ }
};
} // NL3D
#endif // NL_PS_MESH_H
/* End of ps_mesh.h */