// NeL - MMORPG Framework
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see .
#include "std3d.h"
#include "nel/3d/water_shape.h"
#include "nel/3d/water_model.h"
#include "nel/3d/vertex_buffer.h"
#include "nel/3d/texture_bump.h"
#include "nel/3d/texture_blend.h"
#include "nel/3d/scene.h"
#include "nel/3d/water_pool_manager.h"
#include "nel/3d/water_height_map.h"
#include
namespace NL3D {
// globals
/////////////////////////
// WATER WITH NO WAVES //
/////////////////////////
static const char *WaterVPNoWave =
"!!VP1.0 \n\
DP4 o[HPOS].x, c[0], v[0]; #transform vertex in view space \n\
DP4 o[HPOS].y, c[1], v[0]; \n\
DP4 o[HPOS].z, c[2], v[0]; \n\
DP4 o[HPOS].w, c[3], v[0]; \n\
# MUL R1, R2.x, R1; \n\
DP4 o[FOGC].x, c[4], v[0]; #setup fog \n\
MUL R3, v[0], c[5]; #compute bump 0 uv's \n\
ADD o[TEX0], R3, c[6]; \n\
MUL R3, v[0], c[7]; #compute bump 1 uv's \n\
ADD o[TEX1], R3, c[8]; \n\
ADD R0, c[9], -v[0]; #r1 = eye - vertex \n\
DP3 R1, R0, R0; #r1 = eye - vertex, r2 = (eye - vertex)^2 \n\
RSQ R1, R1.x; #r1 = eye - vertex, r2 = 1/d(eye, vertex) \n\
MUL R0, R0, R1; \n\
DP3 R1.x, R0.xyww, R0.xyww; \n\
MAD o[TEX2], -R0, c[10], c[10]; #envmap tex coord \n\
END";
// a diffuse texture is added
static const char *WaterVPNoWaveDiffuse =
"!!VP1.0\n\
DP4 o[HPOS].x, c[0], v[0]; #transform vertex in view space \n\
DP4 o[HPOS].y, c[1], v[0]; \n\
DP4 o[HPOS].z, c[2], v[0]; \n\
DP4 o[HPOS].w, c[3], v[0]; \n\
# MUL R1, R2.x, R1; \n\
DP4 o[FOGC].x, c[4], v[0]; #setup fog \n\
MUL R3, v[0], c[5]; #compute bump 0 uv's \n\
ADD o[TEX0], R3, c[6]; \n\
MUL R3, v[0], c[7]; #compute bump 1 uv's \n\
ADD o[TEX1], R3, c[8]; \n\
ADD R0, c[9], -v[0]; #r1 = eye - vertex \n\
DP3 R1, R0, R0; #r1 = eye - vertex, r2 = (eye - vertex)^2 \n\
RSQ R1, R1.x; #r1 = eye - vertex, r2 = 1/d(eye, vertex) \n\
MUL R0, R0, R1; \n\
MAD o[TEX2], -R0, c[10], c[10]; #envmap tex coord \n\
DP4 o[TEX3].x, v[0], c[11]; #compute uv for diffuse texture \n\
DP4 o[TEX3].y, v[0], c[12]; \n\
END";
////////////////
// WAVY WATER //
////////////////
// common start for Water vertex programs
/** The first part of the program does the following :
* - Compute linear distance to eye
* - Attenuate height with distance
* - Attenuate normal with distance (e.g at max distance, the normal is (0, 0, 1)
* - Transform vertex pos into view space
* - compute fog coordinate
* At the end of the program we got :
* R1 = (eye - vertex).normed()
* R0 = Attenuated normal at vertex
* R4 = position of point with attenuated height
*/
static const char *WaterVPStartCode =
"!!VP1.0\n\
ADD R1, c[7], -v[0]; #r1 = eye - vertex \n\
DP3 R2, R1, R1; #r1 = eye - vertex, r2 = (eye - vertex)^2 \n\
MAX R2, R2, c[16]; # avoid imprecision around 0 \n\
RSQ R2, R2.x; #r1 = eye - vertex, r2 = 1/d(eye, vertex) \n\
RCP R3, R2.x; \n\
MAD R3, c[6].xxxx, -R3, c[6].yyyy; \n\
MAX R3, c[5], R3; \n\
MUL R0, R3, v[8]; #attenuate normal with distance \n\
MUL R4.z, R3, v[0]; #attenuate height with distance \n\
MOV R4.xyw, v[0]; \n\
MOV R0.z, c[4].x; #set normal z to 1 \n\
DP3 R3.x, R0, R0; \n\
RSQ R3.x, R3.x; #normalize normal in R3 \n\
MUL R0, R0, R3.x; \n\
DP4 o[HPOS].x, c[0], R4; #transform vertex in view space \n\
DP4 o[HPOS].y, c[1], R4; \n\
DP4 o[HPOS].z, c[2], R4; \n\
DP4 o[HPOS].w, c[3], R4; \n\
MUL R1, R1, R2.x; #normalize r1, r1 = (eye - vertex).normed \n\
# DP3 R2.x, R1.xyww, R1.xyww; \n\
# MUL R1, R2.x, R1; \n\
DP4 o[FOGC].x, c[18], R4; #setup fog \n\
";
/** This part of vertex program compute 2 layers of bump (for use with texture shaders)
*/
static const char *WaterVpBump2LayersCode =
" MUL R3, v[0], c[10]; #compute bump 0 uv's \n\
ADD o[TEX0], R3, c[9]; \n\
MUL R3, v[0], c[12]; #compute bump 1 uv's \n\
ADD o[TEX1], R3, c[11]; \n\
DP3 R2.x, R1, R0; \n\
MUL R0, R0, R2.x; \n\
ADD R2, R0, R0; \n\
ADD R0, R2, -R1; #compute reflection vector \n\
MAD o[TEX2], R0, c[8], c[8]; \n\
";
/** Version with one bump map only (Texture shaders support chaining of offset textures, EMBM does not)
*/
static const char *WaterVpBump1LayersCode =
"MUL R3, v[0], c[12]; #compute bump 1 uv's \n\
ADD o[TEX0], R3, c[11]; \n\
DP3 R2.x, R1, R0; \n\
MUL R0, R0, R2.x; \n\
ADD R2, R0, R0; \n\
ADD R0, R2, -R1; #compute reflection vector \n\
MAD o[TEX1], R0, c[8], c[8]; \n\
";
/** Optional diffuse texture in stage 3
*/
static const char *WaterVpDiffuseMapStage3Code =
"DP4 o[TEX3].x, R4, c[13]; #compute uv for diffuse texture \n\
DP4 o[TEX3].y, R4, c[14]; \n\
";
/** Optional diffuse texture in stage 2
*/
static const char *WaterVpDiffuseMapStage2Code =
"DP4 o[TEX2].x, R4, c[13]; #compute uv for diffuse texture \n\
DP4 o[TEX2].y, R4, c[14]; \n\
";
/** Optional diffuse texture in stage 1
*/
static const char *WaterVpDiffuseMapStage1Code =
"DP4 o[TEX1].x, R4, c[13]; #compute uv for diffuse texture \n\
DP4 o[TEX1].y, R4, c[14]; \n\
";
// Envmap is setup in texture 0, no bump is used
static const char *WaterVpNoBumpCode =
" DP3 R2.x, R1, R0; #project view vector on normal for symetry \n\
MUL R0, R0, R2.x; \n\
ADD R2, R0, R0; \n\
ADD R0, R2, -R1; #compute reflection vector \n\
MAD o[TEX0], R0, c[8], c[8]; \n\
DP4 o[FOGC].x, c[18], R4; #setup fog \n\
";
// static members
uint32 CWaterShape::_XScreenGridSize = 20;
uint32 CWaterShape::_YScreenGridSize = 20;
//
uint32 CWaterShape::_XGridBorder = 4;
uint32 CWaterShape::_YGridBorder = 4;
uint32 CWaterShape::_MaxGridSize;
bool CWaterShape::_GridSizeTouched = true;
NLMISC::CSmartPtr CWaterShape::_VertexProgramBump1;
NLMISC::CSmartPtr CWaterShape::_VertexProgramBump2;
NLMISC::CSmartPtr CWaterShape::_VertexProgramBump1Diffuse;
NLMISC::CSmartPtr CWaterShape::_VertexProgramBump2Diffuse;
NLMISC::CSmartPtr CWaterShape::_VertexProgramNoBump;
NLMISC::CSmartPtr CWaterShape::_VertexProgramNoBumpDiffuse;
// water with no waves
NLMISC::CSmartPtr CWaterShape::_VertexProgramNoWave;
NLMISC::CSmartPtr CWaterShape::_VertexProgramNoWaveDiffuse;
/** Build a vertex program for water depending on requirements
*/
static CVertexProgram *BuildWaterVP(bool diffuseMap, bool bumpMap, bool use2BumpMap)
{
std::string vp = WaterVPStartCode;
if (bumpMap && use2BumpMap)
{
vp += WaterVpBump2LayersCode;
if (diffuseMap) vp += WaterVpDiffuseMapStage3Code;
}
else
if (bumpMap)
{
vp += WaterVpBump2LayersCode;
if (diffuseMap) vp += WaterVpDiffuseMapStage2Code;
}
else
{
vp += WaterVpNoBumpCode;
if (diffuseMap) vp += WaterVpDiffuseMapStage1Code;
}
vp += "\nEND";
return new CVertexProgram(vp.c_str());
// TODO_VP_GLSL
}
//============================================
/*
* Constructor
*/
CWaterShape::CWaterShape() : _WaterPoolID(0), _TransitionRatio(0.6f), _WaveHeightFactor(3), _ComputeLightmap(false), _SplashEnabled(true)
{
/* ***********************************************
* WARNING: This Class/Method must be thread-safe (ctor/dtor/serial): no static access for instance
* It can be loaded/called through CAsyncFileManager for instance
* ***********************************************/
_DefaultPos.setDefaultValue(NLMISC::CVector::Null);
_DefaultScale.setDefaultValue(NLMISC::CVector(1, 1, 1));
_DefaultRotQuat.setDefaultValue(CQuat::Identity);
for (sint k = 0; k < 2; ++k)
{
_HeightMapScale[k].set(1, 1);
_HeightMapSpeed[k].set(0, 0);
_HeightMapTouch[k] = true;
_UsesSceneWaterEnvMap[k] = false;
}
_ColorMapMatColumn0.set(1, 0);
_ColorMapMatColumn1.set(0, 1);
_ColorMapMatPos.set(0, 0);
_EnvMapMeanColorComputed = false;
}
//============================================
CRGBA CWaterShape::computeEnvMapMeanColor()
{
// TMP :
// just used for water rendering in multiple parts with parallel projection
// -> drawn as an uniform polygon with envmap mean coloe
if (!_EnvMapMeanColorComputed)
{
_EnvMapMeanColor = NLMISC::CRGBA(0, 0, 255);
if (_EnvMap[0])
{
_EnvMap[0]->generate();
_EnvMap[0]->convertToType(CBitmap::RGBA);
uint32 r = 0;
uint32 g = 0;
uint32 b = 0;
uint32 a = 0;
uint numPixs = _EnvMap[0]->getHeight() * _EnvMap[0]->getWidth();
const CRGBA *src = (const CRGBA *) (&_EnvMap[0]->getPixels(0)[0]);
const CRGBA *last = src + numPixs;
while (src != last)
{
r += src->R;
g += src->G;
b += src->B;
a += src->A;
++ src;
}
if (numPixs != 0)
{
_EnvMapMeanColor = NLMISC::CRGBA((uint8) (r / numPixs),
(uint8) (g / numPixs),
(uint8) (b / numPixs),
(uint8) (a / numPixs));
}
_EnvMap[0]->release();
}
_EnvMapMeanColorComputed = true;
}
return _EnvMapMeanColor;
}
//============================================
CWaterShape::~CWaterShape()
{
/* ***********************************************
* WARNING: This Class/Method must be thread-safe (ctor/dtor/serial): no static access for instance
* It can be loaded/called through CAsyncFileManager for instance
* ***********************************************/
if (
(_EnvMap[0] && dynamic_cast((ITexture *) _EnvMap[0]))
|| (_EnvMap[1] && dynamic_cast((ITexture *) _EnvMap[1]))
)
{
GetWaterPoolManager().unRegisterWaterShape(this);
}
}
//============================================
void CWaterShape::initVertexProgram()
{
static bool created = false;
if (!created)
{
// waves
_VertexProgramBump1 = BuildWaterVP(false, true, false);
_VertexProgramBump2 = BuildWaterVP(false, true, true);
_VertexProgramBump1Diffuse = BuildWaterVP(true, true, false);
_VertexProgramBump2Diffuse = BuildWaterVP(true, true, true);
_VertexProgramNoBump = BuildWaterVP(false, false, false);
_VertexProgramNoBumpDiffuse = BuildWaterVP(true, false, false);
// no waves
_VertexProgramNoWave = new CVertexProgram(WaterVPNoWave); // TODO_VP_GLSL
_VertexProgramNoWaveDiffuse = new CVertexProgram(WaterVPNoWaveDiffuse); // TODO_VP_GLSL
created = true;
}
}
//============================================
CTransformShape *CWaterShape::createInstance(CScene &scene)
{
CWaterModel *wm = NLMISC::safe_cast(scene.createModel(WaterModelClassId) );
wm->Shape = this;
// set default pos & scale
wm->ITransformable::setPos( _DefaultPos.getDefaultValue() );
wm->ITransformable::setScale( _DefaultScale.getDefaultValue() );
wm->ITransformable::setRotQuat( _DefaultRotQuat.getDefaultValue() );
//
wm->init();
if (scene.getWaterCallback())
{
CWaterShape *ws = NLMISC::safe_cast((IShape *) wm->Shape);
scene.getWaterCallback()->waterSurfaceAdded(getShape(), wm->getMatrix(), ws->isSplashEnabled(), ws->getUseSceneWaterEnvMap(0) || ws->getUseSceneWaterEnvMap(1));
}
return wm;
}
//============================================
float CWaterShape::getNumTriangles (float distance)
{
// TODO
return 0;
}
//============================================
void CWaterShape::flushTextures (IDriver &driver, uint selectedTexture)
{
// Test if bump maps are supported by driver before to flush them.
// TEMP : can't flush texture for water, because the upload format depends on the shader
// Only the driver can determine it.
// BumpMaps may be uploaded with unsigned or signed format
/*
if (
(driver.supportTextureShaders() && driver.supportTextureAddrMode(CMaterial::OffsetTexture))
|| driver.supportEMBM()
)
{
for (uint k = 0; k < 2; ++k)
{
if (_BumpMap[k] != NULL)
driver.setupTexture(*_BumpMap[k]);
if (_EnvMap[k] != NULL)
driver.setupTexture(*_EnvMap[k]);
}
}
if (_ColorMap != NULL)
driver.setupTexture(*_ColorMap);
*/
}
//============================================
void CWaterShape::setScreenGridSize(uint32 x, uint32 y)
{
nlassert(x > 0 && y > 0);
_XScreenGridSize = x;
_YScreenGridSize = y;
_GridSizeTouched = true;
}
//============================================
void CWaterShape::setGridBorderSize(uint32 x, uint32 y)
{
_XGridBorder = x;
_YGridBorder = y;
_GridSizeTouched = true;
}
//============================================
void CWaterShape::setShape(const NLMISC::CPolygon2D &poly)
{
nlassert(poly.Vertices.size() != 0); // empty poly not allowed
_Poly = poly;
computeBBox();
}
//============================================
void CWaterShape::computeBBox()
{
nlassert(_Poly.Vertices.size() != 0);
NLMISC::CVector2f min, max;
min = max = _Poly.Vertices[0];
for (uint k = 1; k < _Poly.Vertices.size(); ++k)
{
min.minof(min, _Poly.Vertices[k]);
max.maxof(max, _Poly.Vertices[k]);
}
_BBox.setMinMax(CVector(min.x, min.y, 0), CVector(max.x, max.y, 0));
/* nlinfo("center x = %f, y = %f, z = %f", _BBox.getCenter().x, _BBox.getCenter().y, _BBox.getCenter().z);
nlinfo("halsize x = %f, y = %f, z = %f", _BBox.getHalfSize().x, _BBox.getHalfSize().y, _BBox.getHalfSize().z); */
}
//============================================
void CWaterShape::setHeightMap(uint k, ITexture *hm)
{
nlassert(k < 2);
if (!_BumpMap[k])
{
_BumpMap[k] = new CTextureBump;
}
static_cast( (ITexture *) _BumpMap[k])->forceNormalize(true);
static_cast( (ITexture *) _BumpMap[k])->setHeightMap(hm);
_HeightMapTouch[k] = true; // must recompute normalization factor
}
//============================================
ITexture *CWaterShape::getHeightMap(uint k)
{
nlassert(k < 2);
return ((CTextureBump *) (ITexture *) _BumpMap[k] )->getHeightMap();
}
//============================================
const ITexture *CWaterShape::getHeightMap(uint k) const
{
nlassert(k < 2);
return ((CTextureBump *) (ITexture *) _BumpMap[k] )->getHeightMap();
}
//============================================
void CWaterShape::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
/* ***********************************************
* WARNING: This Class/Method must be thread-safe (ctor/dtor/serial): no static access for instance
* It can be loaded/called through CAsyncFileManager for instance
* ***********************************************/
// version 4 : added scene water env map
// version 3 : added '_Splashenabled' flag
sint ver = f.serialVersion(4);
// serial 'shape'
f.serial(_Poly);
// serial heightMap identifier
f.serial(_WaterPoolID);
//serial maps
ITexture *map = NULL;
if (f.isReading())
{
f.serialPolyPtr(map); _EnvMap[0] = map;
f.serialPolyPtr(map); _EnvMap[1] = map;
f.serialPolyPtr(map); _BumpMap[0] = map;
f.serialPolyPtr(map); _BumpMap[1] = map;
f.serialPolyPtr(map); _ColorMap = map;
computeBBox();
}
else
{
map = _EnvMap[0]; f.serialPolyPtr(map);
map = _EnvMap[1]; f.serialPolyPtr(map);
map = _BumpMap[0]; f.serialPolyPtr(map);
map = _BumpMap[1]; f.serialPolyPtr(map);
map = _ColorMap; f.serialPolyPtr(map);
}
f.serial(_HeightMapScale[0], _HeightMapScale[1],
_HeightMapSpeed[0], _HeightMapSpeed[1]);
f.serial(_ColorMapMatColumn0, _ColorMapMatColumn1, _ColorMapMatPos);
// serial default tracks
f.serial(_DefaultPos);
f.serial(_DefaultScale);
f.serial(_DefaultRotQuat);
f.serial(_TransitionRatio);
f.serial(_WaveHeightFactor);
if (ver >= 1)
f.serial (_ComputeLightmap);
if (ver >= 2)
f.serial (_DistMax);
if (ver >= 3)
f.serial(_SplashEnabled);
if (ver >= 4)
{
f.serial(_UsesSceneWaterEnvMap[0], _UsesSceneWaterEnvMap[1]);
}
// tmp
/*
if (f.isReading())
{
_UsesSceneWaterEnvMap[0] = true;
_UsesSceneWaterEnvMap[1] = true;
}
*/
}
//============================================
bool CWaterShape::clip(const std::vector &pyramid, const CMatrix &worldMatrix)
{
for (uint k = 0; k < pyramid.size(); ++k)
{
if (! _BBox.clipBack(pyramid[k] * worldMatrix)) return false;
}
return true;
}
//============================================
void CWaterShape::setHeightMapScale(uint k, const NLMISC::CVector2f &scale)
{
nlassert(k < 2);
_HeightMapScale[k] = scale;
}
//============================================
NLMISC::CVector2f CWaterShape::getHeightMapScale(uint k) const
{
nlassert(k < 2);
return _HeightMapScale[k];
}
//============================================
void CWaterShape::setHeightMapSpeed(uint k, const NLMISC::CVector2f &speed)
{
nlassert(k < 2);
_HeightMapSpeed[k] = speed;
}
//============================================
NLMISC::CVector2f CWaterShape::getHeightMapSpeed(uint k) const
{
nlassert(k < 2);
return _HeightMapSpeed[k];
}
//============================================
void CWaterShape::setColorMapMat(const NLMISC::CVector2f &column0, const NLMISC::CVector2f &column1, const NLMISC::CVector2f &pos)
{
_ColorMapMatColumn0 = column0;
_ColorMapMatColumn1 = column1;
_ColorMapMatPos = pos;
}
//============================================
void CWaterShape::getColorMapMat(NLMISC::CVector2f &column0, NLMISC::CVector2f &column1, NLMISC::CVector2f &pos)
{
column0 = _ColorMapMatColumn0;
column1 = _ColorMapMatColumn1;
pos = _ColorMapMatPos;
}
//============================================
void CWaterShape::envMapUpdate()
{
// if the color map is a blend texture, we MUST be registered to the water pool manager, so that, the
// setBlend message will be routed to this texture.
if (
(_EnvMap[0] && dynamic_cast((ITexture *) _EnvMap[0]))
|| (_EnvMap[1] && dynamic_cast((ITexture *) _EnvMap[1]))
)
{
if (!GetWaterPoolManager().isWaterShapeObserver(this))
{
GetWaterPoolManager().registerWaterShape(this);
}
}
else
{
if (GetWaterPoolManager().isWaterShapeObserver(this))
{
GetWaterPoolManager().unRegisterWaterShape(this);
}
}
}
//============================================
void CWaterShape::setColorMap(ITexture *map)
{
_ColorMap = map;
//colorMapUpdate();
}
//============================================
void CWaterShape::setEnvMap(uint index, ITexture *envMap)
{
nlassert(index < 2);
_EnvMap[index] = envMap;
}
//============================================
void CWaterShape::getShapeInWorldSpace(NLMISC::CPolygon &poly) const
{
poly.Vertices.resize(_Poly.Vertices.size());
// compute the matrix of the object in world space, by using the default tracks
NLMISC::CMatrix objMat;
objMat.identity();
objMat.translate(_DefaultPos.getDefaultValue());
objMat.rotate(_DefaultRotQuat.getDefaultValue());
objMat.scale(_DefaultScale.getDefaultValue());
for (uint k = 0; k < _Poly.Vertices.size(); ++k)
{
poly.Vertices[k] = objMat * NLMISC::CVector(_Poly.Vertices[k].x, _Poly.Vertices[k].y, 0);
}
}
//============================================
void CWaterShape::getShapeInWorldSpace(NLMISC::CPolygon &poly, const NLMISC::CMatrix &objMat) const
{
poly.Vertices.resize(_Poly.Vertices.size());
for (uint k = 0; k < _Poly.Vertices.size(); ++k)
{
poly.Vertices[k] = objMat * NLMISC::CVector(_Poly.Vertices[k].x, _Poly.Vertices[k].y, 0);
}
}
//============================================
void CWaterShape::updateHeightMapNormalizationFactors()
{
for (uint k = 0; k < 2; ++k)
{
if (_HeightMapTouch[k])
{
if (_BumpMap[k] != NULL)
{
_BumpMap[k]->generate();
_HeightMapNormalizationFactor[k] = NLMISC::safe_cast((ITexture *)_BumpMap[k])->getNormalizationFactor();
if (_BumpMap[k]->getReleasable())
{
_BumpMap[k]->release();
}
}
else
{
_HeightMapNormalizationFactor[k] = 1.f;
}
_HeightMapTouch[k] = false;
}
}
}
//======================================================//
// WaveMakerShape //
//======================================================//
//============================================
CWaveMakerShape::CWaveMakerShape() : _Period(1),
_Radius(3),
_PoolID(0),
_Intensity(1),
_ImpulsionMode(true)
{
}
//============================================
CWaveMakerShape::~CWaveMakerShape()
{
}
//============================================
void CWaveMakerShape::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
f.serialVersion(0);
f.serial(_Period, _Radius, _Intensity, _PoolID, _ImpulsionMode);
}
//============================================
CTransformShape *CWaveMakerShape::createInstance(CScene &scene)
{
CWaveMakerModel *wmm = NLMISC::safe_cast(scene.createModel(WaveMakerModelClassId) );
wmm->Shape = this;
// set default pos & scale
wmm->ITransformable::setPos( _DefaultPos.getDefaultValue() );
return wmm;
}
//============================================
bool CWaveMakerShape::clip(const std::vector &pyramid, const CMatrix &worldMatrix)
{
// we just test if not too far
const CWaterHeightMap &whm = GetWaterPoolManager().getPoolByID(_PoolID);
const float maxDist = 0.5f * whm.getUnitSize() * whm.getSize();
const NLMISC::CVector pos = worldMatrix.getPos();
for (std::vector::const_iterator it = pyramid.begin(); it != pyramid.end(); ++it)
{
if ((*it) * pos > maxDist) return false;
}
return true;
}
//============================================
void CWaveMakerShape::getAABBox(NLMISC::CAABBox &bbox) const
{
// its just a point
bbox.setCenter(NLMISC::CVector::Null);
bbox.setHalfSize(NLMISC::CVector::Null);
}
} // NL3D