khanat-code-old/code/nel/src/3d/ps_force.cpp

1394 lines
38 KiB
C++
Raw Normal View History

2010-05-06 00:08:41 +00:00
// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "std3d.h"
#include "nel/3d/ps_force.h"
#include "nel/3d/driver.h"
#include "nel/3d/index_buffer.h"
#include "nel/3d/material.h"
#include "nel/3d/vertex_buffer.h"
#include "nel/3d/computed_string.h"
#include "nel/3d/font_manager.h"
#include "nel/3d/particle_system.h"
#include "nel/misc/common.h"
#include "nel/3d/ps_util.h"
#include "nel/3d/ps_misc.h"
namespace NL3D {
/*
* Constructor
*/
CPSForce::CPSForce()
{
NL_PS_FUNC(CPSForce_CPSForce)
}
void CPSForce::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSForce_serial)
f.serialVersion(1);
CPSTargetLocatedBindable::serial(f);
CPSLocatedBindable::serial(f);
}
void CPSForce::registerToTargets(void)
{
NL_PS_FUNC(CPSForce_registerToTargets)
for (TTargetCont::iterator it = _Targets.begin(); it != _Targets.end(); ++it)
{
if (this->isIntegrable())
{
(*it)->registerIntegrableForce(this);
}
else
{
(*it)->addNonIntegrableForceRef();
}
}
}
void CPSForce::step(TPSProcessPass pass)
{
NL_PS_FUNC(CPSForce_step)
switch(pass)
{
case PSToolRender:
show();
break;
default: break;
}
}
void CPSForce::attachTarget(CPSLocated *ptr)
{
NL_PS_FUNC(CPSForce_attachTarget)
nlassert(_Owner);
CPSTargetLocatedBindable::attachTarget(ptr);
// check whether we are integrable, and if so, add us to the list
if (this->isIntegrable())
{
ptr->registerIntegrableForce(this);
}
else
{
ptr->addNonIntegrableForceRef();
}
}
void CPSForce::releaseTargetRsc(CPSLocated *target)
{
NL_PS_FUNC(CPSForce_releaseTargetRsc)
if (this->isIntegrable())
{
target->unregisterIntegrableForce(this);
}
else
{
target->releaseNonIntegrableForceRef();
}
}
void CPSForce::basisChanged(TPSMatrixMode matrixMode)
{
NL_PS_FUNC(CPSForce_basisChanged)
if (!this->isIntegrable()) return;
for (TTargetCont::iterator it = _Targets.begin(); it != _Targets.end(); ++it)
{
(*it)->integrableForceBasisChanged(matrixMode);
}
}
void CPSForce::cancelIntegrable(void)
{
NL_PS_FUNC(CPSForce_cancelIntegrable)
nlassert(_Owner);
for (TTargetCont::iterator it = _Targets.begin(); it != _Targets.end(); ++it)
{
if ((*it)->getMatrixMode() == _Owner->getMatrixMode())
{
(*it)->unregisterIntegrableForce(this);
(*it)->addNonIntegrableForceRef();
}
}
}
void CPSForce::renewIntegrable(void)
{
NL_PS_FUNC(CPSForce_renewIntegrable)
nlassert(_Owner);
for (TTargetCont::iterator it = _Targets.begin(); it != _Targets.end(); ++it)
{
if ((*it)->getMatrixMode() == _Owner->getMatrixMode())
{
(*it)->registerIntegrableForce(this);
(*it)->releaseNonIntegrableForceRef();
}
}
}
///////////////////////////////////////
// CPSForceIntensity implementation //
///////////////////////////////////////
void CPSForceIntensity::setIntensity(float value)
{
NL_PS_FUNC(CPSForceIntensity_setIntensity)
if (_IntensityScheme)
{
delete _IntensityScheme;
_IntensityScheme = NULL;
}
_K = value;
}
CPSForceIntensity::~CPSForceIntensity()
{
NL_PS_FUNC(CPSForceIntensity_CPSForceIntensityDtor)
delete _IntensityScheme;
}
void CPSForceIntensity::setIntensityScheme(CPSAttribMaker<float> *scheme)
{
NL_PS_FUNC(CPSForceIntensity_setIntensityScheme)
nlassert(scheme);
delete _IntensityScheme;
_IntensityScheme = scheme;
if (getForceIntensityOwner() && scheme->hasMemory()) scheme->resize(getForceIntensityOwner()->getMaxSize(), getForceIntensityOwner()->getSize());
}
void CPSForceIntensity::serialForceIntensity(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSForceIntensity_IStream )
f.serialVersion(1);
if (!f.isReading())
{
if (_IntensityScheme)
{
bool bFalse = false;
f.serial(bFalse);
f.serialPolyPtr(_IntensityScheme);
}
else
{
bool bTrue = true;
f.serial(bTrue);
f.serial(_K);
}
}
else
{
bool constantIntensity;
f.serial(constantIntensity);
if (constantIntensity)
{
f.serial(_K);
}
else
{
f.serialPolyPtr(_IntensityScheme);
}
}
}
////////////////////////////////////////
// CPSForceIntensityHelper //
////////////////////////////////////////
void CPSForceIntensityHelper::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSForceIntensityHelper_serial)
f.serialVersion(1);
CPSForce::serial(f);
serialForceIntensity(f);
if (f.isReading())
{
registerToTargets();
}
}
////////////////////////////////////////
// CPSDirectionalForce implementation //
////////////////////////////////////////
void CPSDirectionnalForce::computeForces(CPSLocated &target)
{
NL_PS_FUNC(CPSDirectionnalForce_computeForces)
nlassert(CParticleSystem::InsideSimLoop);
// perform the operation on each target
CVector toAdd;
for (uint32 k = 0; k < _Owner->getSize(); ++k)
{
CVector toAddLocal;
CVector dir;
if (_GlobalValueHandle.isValid()) // is direction a global variable ?
{
dir = _GlobalValueHandle.get(); // takes direction from global variable instead
}
else
{
dir = _Dir;
}
toAddLocal = CParticleSystem::EllapsedTime * (_IntensityScheme ? _IntensityScheme->get(_Owner, k) : _K ) * dir;
toAdd = CPSLocated::getConversionMatrix(&target, this->_Owner).mulVector(toAddLocal); // express this in the target basis
TPSAttribVector::iterator it = target.getSpeed().begin(), itend = target.getSpeed().end();
// 1st case : non-constant mass
if (target.getMassScheme())
{
TPSAttribFloat::const_iterator invMassIt = target.getInvMass().begin();
for (;it != itend; ++it, ++invMassIt)
{
(*it) += *invMassIt * toAdd;
}
}
else
{
// the mass is constant
toAdd /= target.getInitialMass();
for (; it != itend; ++it)
{
(*it) += toAdd;
}
}
}
}
void CPSDirectionnalForce::show()
{
NL_PS_FUNC(CPSDirectionnalForce_show)
CPSLocated *loc;
uint32 index;
CPSLocatedBindable *lb;
_Owner->getOwner()->getCurrentEditedElement(loc, index, lb);
setupDriverModelMatrix();
CVector dir;
if (_GlobalValueHandle.isValid()) // is direction a global variable ?
{
dir = _GlobalValueHandle.get(); // takes direction from global variable instead
}
else
{
dir = _Dir;
}
// for each element, see if it is the selected element, and if yes, display in red
for (uint k = 0; k < _Owner->getSize(); ++k)
{
const CRGBA col = (((lb == NULL || this == lb) && loc == _Owner && index == k) ? CRGBA::Red : CRGBA(127, 127, 127));
CPSUtil::displayArrow(getDriver(), _Owner->getPos()[k], dir, 1.f, col, CRGBA(80, 80, 0));
}
}
void CPSDirectionnalForce::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSDirectionnalForce_serial)
// Version 2 : added link to a global vector value
//
sint ver = f.serialVersion(2);
CPSForceIntensityHelper::serial(f);
if (ver == 1)
{
f.serial(_Dir);
_GlobalValueHandle.reset();
}
else
{
bool useHandle = _GlobalValueHandle.isValid();
f.serial(useHandle);
if (useHandle)
{
// a global value is used
if (f.isReading())
{
std::string handleName;
f.serial(handleName);
// retrieve a handle to the global value from the particle system
_GlobalValueHandle = CParticleSystem::getGlobalVectorValueHandle(handleName);
}
else
{
std::string handleName = _GlobalValueHandle.getName();
f.serial(handleName);
}
}
else
{
f.serial(_Dir);
}
}
}
void CPSDirectionnalForce::enableGlobalVectorValue(const std::string &name)
{
NL_PS_FUNC(CPSDirectionnalForce_enableGlobalVectorValue)
if (name.empty())
{
_GlobalValueHandle.reset();
return;
}
_GlobalValueHandle = CParticleSystem::getGlobalVectorValueHandle(name);
}
std::string CPSDirectionnalForce::getGlobalVectorValueName() const
{
NL_PS_FUNC(CPSDirectionnalForce_getGlobalVectorValueName)
return _GlobalValueHandle.isValid() ? _GlobalValueHandle.getName() : "";
}
////////////////////////////
// gravity implementation //
////////////////////////////
void CPSGravity::computeForces(CPSLocated &target)
{
NL_PS_FUNC(CPSGravity_computeForces)
nlassert(CParticleSystem::InsideSimLoop);
// perform the operation on each target
CVector toAdd;
for (uint32 k = 0; k < _Owner->getSize(); ++k)
{
CVector toAddLocal = CParticleSystem::EllapsedTime * CVector(0, 0, _IntensityScheme ? - _IntensityScheme->get(_Owner, k) : - _K);
toAdd = CPSLocated::getConversionMatrix(&target, this->_Owner).mulVector(toAddLocal); // express this in the target basis
TPSAttribVector::iterator it = target.getSpeed().begin(), itend = target.getSpeed().end();
if (toAdd.x && toAdd.y)
{
for (; it != itend; ++it)
{
(*it) += toAdd;
}
}
else // only the z component is not null, which should be the majority of cases ...
{
for (; it != itend; ++it)
{
it->z += toAdd.z;
}
}
}
}
void CPSGravity::show()
{
NL_PS_FUNC(CPSGravity_show)
CVector I = computeI();
CVector K = CVector(0,0,1);
// this is not designed for efficiency (target : edition code)
CIndexBuffer pb;
CVertexBuffer vb;
CMaterial material;
IDriver *driver = getDriver();
const float toolSize = 0.2f;
vb.setVertexFormat(CVertexBuffer::PositionFlag);
vb.setNumVertices(6);
{
CVertexBufferReadWrite vba;
vb.lock (vba);
vba.setVertexCoord(0, -toolSize * I);
vba.setVertexCoord(1, toolSize * I);
vba.setVertexCoord(2, CVector(0, 0, 0));
vba.setVertexCoord(3, -6.0f * toolSize * K);
vba.setVertexCoord(4, -toolSize * I - 5.0f * toolSize * K);
vba.setVertexCoord(5, toolSize * I - 5.0f * toolSize * K);
}
pb.setFormat(NL_DEFAULT_INDEX_BUFFER_FORMAT);
pb.setNumIndexes(2*4);
{
CIndexBufferReadWrite ibaWrite;
pb.lock (ibaWrite);
ibaWrite.setLine(0, 0, 1);
ibaWrite.setLine(2, 2, 3);
ibaWrite.setLine(4, 4, 3);
ibaWrite.setLine(6, 3, 5);
}
material.setColor(CRGBA(127, 127, 127));
material.setLighting(false);
material.setBlendFunc(CMaterial::one, CMaterial::one);
material.setZWrite(false);
material.setBlend(true);
CMatrix mat;
for (TPSAttribVector::const_iterator it = _Owner->getPos().begin(); it != _Owner->getPos().end(); ++it)
{
mat.identity();
mat.translate(*it);
mat = getLocalToWorldMatrix() * mat;
driver->setupModelMatrix(mat);
driver->activeVertexBuffer(vb);
driver->activeIndexBuffer(pb);
driver->renderLines(material, 0, pb.getNumIndexes()/2);
// affiche un g a cote de la force
CVector pos = *it + CVector(1.5f * toolSize, 0, -1.2f * toolSize);
pos = getLocalToWorldMatrix() * pos;
// must have set this
nlassert(getFontGenerator() && getFontGenerator());
CPSUtil::print(driver, std::string("G")
, *getFontGenerator()
, *getFontManager()
, pos
, 80.0f * toolSize );
}
}
void CPSGravity::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSGravity_IStream )
f.serialVersion(1);
CPSForceIntensityHelper::serial(f);
}
bool CPSGravity::isIntegrable(void) const
{
NL_PS_FUNC(CPSGravity_isIntegrable)
return _IntensityScheme == NULL;
}
void CPSGravity::integrate(float date, CPSLocated *src, uint32 startIndex, uint32 numObjects, NLMISC::CVector *destPos, NLMISC::CVector *destSpeed,
bool accumulate,
uint posStride, uint speedStride
) const
{
NL_PS_FUNC(CPSGravity_integrate)
#define NEXT_SPEED destSpeed = (NLMISC::CVector *) ((uint8 *) destSpeed + speedStride);
#define NEXT_POS destPos = (NLMISC::CVector *) ((uint8 *) destPos + posStride);
float deltaT;
if (!destPos && !destSpeed) return;
CPSLocated::TPSAttribParametricInfo::const_iterator it = src->_PInfo.begin() + startIndex,
endIt = src->_PInfo.begin() + startIndex + numObjects;
if (!accumulate) // compute coords from initial condition, and applying this force
{
if (destPos && !destSpeed) // fills dest pos only
{
while (it != endIt)
{
deltaT = date - it->Date;
destPos->x = it->Pos.x + deltaT * it->Speed.x;
destPos->y = it->Pos.y + deltaT * it->Speed.y;
destPos->z = it->Pos.z + deltaT * it->Speed.z - 0.5f * deltaT * deltaT * _K;
++it;
NEXT_POS;
}
}
else if (!destPos && destSpeed) // fills dest speed only
{
while (it != endIt)
{
deltaT = date - it->Date;
destSpeed->x = it->Speed.x;
destSpeed->y = it->Speed.y;
destSpeed->z = it->Speed.z - deltaT * _K;
++it;
NEXT_SPEED;
}
}
else // fills both speed and pos
{
while (it != endIt)
{
deltaT = date - it->Date;
destPos->x = it->Pos.x + deltaT * it->Speed.x;
destPos->y = it->Pos.y + deltaT * it->Speed.y;
destPos->z = it->Pos.z + deltaT * it->Speed.z - 0.5f * deltaT * deltaT * _K;
destSpeed->x = it->Speed.x;
destSpeed->y = it->Speed.y;
destSpeed->z = it->Speed.z - deltaT * _K;
++it;
NEXT_POS;
NEXT_SPEED;
}
}
}
else // accumulate datas
{
if (destPos && !destSpeed) // fills dest pos only
{
while (it != endIt)
{
deltaT = date - it->Date;
destPos->z -= 0.5f * deltaT * deltaT * _K;
++it;
NEXT_POS;
}
}
else if (!destPos && destSpeed) // fills dest speed only
{
while (it != endIt)
{
deltaT = date - it->Date;
destSpeed->z -= deltaT * _K;
++it;
NEXT_SPEED;
}
}
else // fills both speed and pos
{
while (it != endIt)
{
deltaT = date - it->Date;
destPos->z -= 0.5f * deltaT * deltaT * _K;
destSpeed->z -= deltaT * _K;
++it;
NEXT_POS;
NEXT_SPEED;
}
}
}
}
void CPSGravity::integrateSingle(float startDate, float deltaT, uint numStep,
const CPSLocated *src, uint32 indexInLocated,
NLMISC::CVector *destPos,
bool accumulate /*= false*/,
uint stride/* = sizeof(NLMISC::CVector)*/) const
{
NL_PS_FUNC(CPSGravity_CVector )
nlassert(src->isParametricMotionEnabled());
//nlassert(deltaT > 0);
nlassert(numStep > 0);
#ifdef NL_DEBUG
NLMISC::CVector *endPos = (NLMISC::CVector *) ( (uint8 *) destPos + stride * numStep);
#endif
const CPSLocated::CParametricInfo &pi = src->_PInfo[indexInLocated];
const NLMISC::CVector &startPos = pi.Pos;
if (numStep != 0)
{
if (!accumulate)
{
destPos = FillBufUsingSubdiv(startPos, pi.Date, startDate, deltaT, numStep, destPos, stride);
if (numStep != 0)
{
float currDate = startDate - pi.Date;
nlassert(currDate >= 0);
const NLMISC::CVector &startSpeed = pi.Speed;
do
{
#ifdef NL_DEBUG
nlassert(destPos < endPos);
#endif
float halfTimeSquare = 0.5f * currDate * currDate;
destPos->x = startPos.x + currDate * startSpeed.x;
destPos->y = startPos.y + currDate * startSpeed.y;
destPos->z = startPos.z + currDate * startSpeed.z - _K * halfTimeSquare;
currDate += deltaT;
destPos = (NLMISC::CVector *) ( (uint8 *) destPos + stride);
}
while (--numStep);
}
}
else
{
uint numToSkip = ScaleFloatGE(startDate, deltaT, pi.Date, numStep);
if (numToSkip < numStep)
{
numStep -= numToSkip;
float currDate = startDate + deltaT * numToSkip - pi.Date;
do
{
#ifdef NL_DEBUG
nlassert(destPos < endPos);
#endif
float halfTimeSquare = 0.5f * currDate * currDate;
destPos->z -= _K * halfTimeSquare;
currDate += deltaT;
destPos = (NLMISC::CVector *) ( (uint8 *) destPos + stride);
}
while (--numStep);
}
}
}
}
void CPSGravity::setIntensity(float value)
{
NL_PS_FUNC(CPSGravity_setIntensity)
if (_IntensityScheme)
{
CPSForceIntensityHelper::setIntensity(value);
renewIntegrable(); // integrable again
}
else
{
CPSForceIntensityHelper::setIntensity(value);
}
}
void CPSGravity::setIntensityScheme(CPSAttribMaker<float> *scheme)
{
NL_PS_FUNC(CPSGravity_setIntensityScheme)
if (!_IntensityScheme)
{
cancelIntegrable(); // not integrable anymore
}
CPSForceIntensityHelper::setIntensityScheme(scheme);
}
/////////////////////////////////////////
// CPSCentralGravity implementation //
/////////////////////////////////////////
void CPSCentralGravity::computeForces(CPSLocated &target)
{
NL_PS_FUNC(CPSCentralGravity_computeForces)
nlassert(CParticleSystem::InsideSimLoop);
// for each central gravity, and each target, we check if they are in the same basis
// if not, we need to transform the central gravity attachment pos into the target basis
uint32 size = _Owner->getSize();
// a vector that goes from the gravity to the object
CVector centerToObj;
float dist;
for (uint32 k = 0; k < size; ++k)
{
const float ellapsedTimexK = CParticleSystem::EllapsedTime * (_IntensityScheme ? _IntensityScheme->get(_Owner, k) : _K);
const CMatrix &m = CPSLocated::getConversionMatrix(&target, this->_Owner);
const CVector center = m * (_Owner->getPos()[k]);
TPSAttribVector::iterator it2 = target.getSpeed().begin(), it2End = target.getSpeed().end();
TPSAttribFloat::const_iterator invMassIt = target.getInvMass().begin();
TPSAttribVector::const_iterator posIt = target.getPos().begin();
for (; it2 != it2End; ++it2, ++invMassIt, ++posIt)
{
// our equation does 1 / r attenuation, which is not realistic, but fast ...
centerToObj = center - *posIt;
dist = centerToObj * centerToObj;
if (dist > 10E-6f)
{
(*it2) += (*invMassIt) * ellapsedTimexK * (1.f / dist) * centerToObj;
}
}
}
}
void CPSCentralGravity::show()
{
NL_PS_FUNC(CPSCentralGravity_show)
CVector I = CVector::I;
CVector J = CVector::J;
const CVector tab[] = { -I - J, I - J
,-I + J, I + J
, I - J, I + J
, -I - J, -I + J
, I + J, -I - J
, I - J, J - I
};
const uint tabSize = sizeof(tab) / (2 * sizeof(CVector));
const float sSize = 0.08f;
displayIcon2d(tab, tabSize, sSize);
}
void CPSCentralGravity::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSCentralGravity_IStream )
f.serialVersion(1);
CPSForceIntensityHelper::serial(f);
}
/////////////////////////////////
// CPSSpring implementation //
/////////////////////////////////
void CPSSpring::computeForces(CPSLocated &target)
{
NL_PS_FUNC(CPSSpring_computeForces)
nlassert(CParticleSystem::InsideSimLoop);
// for each spring, and each target, we check if they are in the same basis
// if not, we need to transform the spring attachment pos into the target basis
uint32 size = _Owner->getSize();
for (uint32 k = 0; k < size; ++k)
{
const float ellapsedTimexK = CParticleSystem::EllapsedTime * (_IntensityScheme ? _IntensityScheme->get(_Owner, k) : _K);
const CMatrix &m = CPSLocated::getConversionMatrix(&target, this->_Owner);
const CVector center = m * (_Owner->getPos()[k]);
TPSAttribVector::iterator it = target.getSpeed().begin(), itEnd = target.getSpeed().end();
TPSAttribFloat::const_iterator invMassIt = target.getInvMass().begin();
TPSAttribVector::const_iterator posIt = target.getPos().begin();
for (; it != itEnd; ++it, ++invMassIt, ++posIt)
{
// apply the spring equation
(*it) += (*invMassIt) * ellapsedTimexK * (center - *posIt);
}
}
}
void CPSSpring::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSSpring_serial)
f.serialVersion(1);
CPSForceIntensityHelper::serial(f);
}
void CPSSpring::show()
{
NL_PS_FUNC(CPSSpring_show)
CVector I = CVector::I;
CVector J = CVector::J;
static const CVector tab[] =
{
-I + 2 * J,
I + 2 * J,
I + 2 * J, -I + J,
-I + J, I + J,
I + J, -I,
-I, I,
I, -I - J,
-I - J, I - J,
I - J,
- I - 2 * J,
- I - 2 * J,
I - 2 * J
};
const uint tabSize = sizeof(tab) / (2 * sizeof(CVector));
const float sSize = 0.08f;
displayIcon2d(tab, tabSize, sSize);
}
/////////////////////////////////////////
// CPSCylindricVortex implementation //
/////////////////////////////////////////
void CPSCylindricVortex::computeForces(CPSLocated &target)
{
NL_PS_FUNC(CPSCylindricVortex_computeForces)
nlassert(CParticleSystem::InsideSimLoop);
uint32 size = _Owner->getSize();
for (uint32 k = 0; k < size; ++k) // for each vortex
{
const float invR = 1.f / _Radius[k];
const float radius2 = _Radius[k] * _Radius[k];
// intensity for this vortex
nlassert(_Owner);
float intensity = (_IntensityScheme ? _IntensityScheme->get(_Owner, k) : _K);
// express the vortex position and plane normal in the located basis
const CMatrix &m = CPSLocated::getConversionMatrix(&target, this->_Owner);
const CVector center = m * (_Owner->getPos()[k]);
const CVector n = m.mulVector(_Normal[k]);
TPSAttribVector::iterator speedIt = target.getSpeed().begin(), speedItEnd = target.getSpeed().end();
TPSAttribFloat::const_iterator invMassIt = target.getInvMass().begin();
TPSAttribVector::const_iterator posIt = target.getPos().begin();
// projection of the current located pos on the vortex axis
CVector p;
// a vector that go from the vortex center to the point we're dealing with
CVector v2p;
// the square of the dist of the projected pos
float d2 , d;
CVector realTangentialSpeed;
CVector tangentialSpeed;
CVector radialSpeed;
for (; speedIt != speedItEnd; ++speedIt, ++invMassIt, ++posIt)
{
v2p = *posIt - center;
p = v2p - (v2p * n) * n;
d2 = p * p;
if (d2 < radius2) // not out of range ?
{
if (d2 > 10E-6)
{
d = sqrtf(d2);
p *= 1.f / d;
// compute the speed vect that we should have (normalized)
realTangentialSpeed = n ^ p;
tangentialSpeed = (*speedIt * realTangentialSpeed) * realTangentialSpeed;
radialSpeed = (p * *speedIt) * p;
// update radial speed;
*speedIt -= _RadialViscosity * CParticleSystem::EllapsedTime * radialSpeed;
// update tangential speed
*speedIt -= _TangentialViscosity * intensity * CParticleSystem::EllapsedTime * (tangentialSpeed - (1.f - d * invR) * realTangentialSpeed);
}
}
}
}
}
void CPSCylindricVortex::show()
{
NL_PS_FUNC(CPSCylindricVortex_show)
CPSLocated *loc;
uint32 index;
CPSLocatedBindable *lb;
_Owner->getOwner()->getCurrentEditedElement(loc, index, lb);
// must have set this
nlassert(getFontGenerator() && getFontGenerator());
setupDriverModelMatrix();
for (uint k = 0; k < _Owner->getSize(); ++k)
{
const CRGBA col = ((lb == NULL || this == lb) && loc == _Owner && index == k ? CRGBA::Red : CRGBA(127, 127, 127));
CMatrix m;
CPSUtil::buildSchmidtBasis(_Normal[k], m);
CPSUtil::displayDisc(*getDriver(), _Radius[k], _Owner->getPos()[k], m, 32, col);
CPSUtil::displayArrow(getDriver(), _Owner->getPos()[k], _Normal[k], 1.f, col, CRGBA(200, 0, 200));
// display a V letter at the center
CPSUtil::print(getDriver(), std::string("v"), *getFontGenerator(), *getFontManager(), _Owner->getPos()[k], 80.f);
}
}
void CPSCylindricVortex::setMatrix(uint32 index, const CMatrix &m)
{
NL_PS_FUNC(CPSCylindricVortex_setMatrix)
nlassert(index < _Normal.getSize());
_Normal[index] = m.getK();
_Owner->getPos()[index] = m.getPos();
}
CMatrix CPSCylindricVortex::getMatrix(uint32 index) const
{
NL_PS_FUNC(CPSCylindricVortex_getMatrix)
CMatrix m;
CPSUtil::buildSchmidtBasis(_Normal[index], m);
m.setPos(_Owner->getPos()[index] );
return m;
}
void CPSCylindricVortex::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSCylindricVortex_IStream )
f.serialVersion(1);
CPSForceIntensityHelper::serial(f);
f.serial(_Normal);
f.serial(_Radius);
f.serial(_RadialViscosity);
f.serial(_TangentialViscosity);
}
void CPSCylindricVortex::newElement(const CPSEmitterInfo &info)
{
NL_PS_FUNC(CPSCylindricVortex_newElement)
CPSForceIntensityHelper::newElement(info);
_Normal.insert(CVector::K);
_Radius.insert(1.f);
}
void CPSCylindricVortex::deleteElement(uint32 index)
{
NL_PS_FUNC(CPSCylindricVortex_deleteElement)
CPSForceIntensityHelper::deleteElement(index);
_Normal.remove(index);
_Radius.remove(index);
}
void CPSCylindricVortex::resize(uint32 size)
{
NL_PS_FUNC(CPSCylindricVortex_resize)
nlassert(size < (1 << 16));
CPSForceIntensityHelper::resize(size);
_Normal.resize(size);
_Radius.resize(size);
}
/**
* a magnetic field that has the given direction
*/
void CPSMagneticForce::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSMagneticForce_serial)
f.serialVersion(1);
CPSDirectionnalForce::serial(f);
}
void CPSMagneticForce::computeForces(CPSLocated &target)
{
NL_PS_FUNC(CPSMagneticForce_computeForces)
nlassert(CParticleSystem::InsideSimLoop);
// perform the operation on each target
for (uint32 k = 0; k < _Owner->getSize(); ++k)
{
float intensity = CParticleSystem::EllapsedTime * (_IntensityScheme ? _IntensityScheme->get(_Owner, k) : _K);
NLMISC::CVector toAdd = CPSLocated::getConversionMatrix(&target, this->_Owner).mulVector(_Dir); // express this in the target basis
TPSAttribVector::iterator it = target.getSpeed().begin(), itend = target.getSpeed().end();
// 1st case : non-constant mass
if (target.getMassScheme())
{
TPSAttribFloat::const_iterator invMassIt = target.getInvMass().begin();
for (; it != itend; ++it, ++invMassIt)
{
(*it) += intensity * *invMassIt * (*it ^ toAdd);
}
}
else
{
float i = intensity / target.getInitialMass();
for (; it != itend; ++it)
{
(*it) += i * (*it ^ toAdd);
}
}
}
}
/**
* Brownian force implementation
*/
const uint BFNumPredefinedPos = 8192; // should be a power of 2
const uint BFPredefinedNumInterp = 256; /** this should divide BFNumPredefinedPos. This define the number
* of values used to interpolate between 2 position of the npose
* (because we don't filter values when we access them)
*/
const uint BFNumPrecomputedImpulsions = 1024; /// used to avoid to have to call rand for each particle the force applies on...
NLMISC::CVector CPSBrownianForce::PrecomputedPos[BFNumPredefinedPos]; // after the sequence we must be back to the start position
NLMISC::CVector CPSBrownianForce::PrecomputedSpeed[BFNumPredefinedPos];
NLMISC::CVector CPSBrownianForce::PrecomputedImpulsions[BFNumPrecomputedImpulsions];
///==========================================================
CPSBrownianForce::CPSBrownianForce(float intensity /* = 1.f*/) : _ParametricFactor(1.f)
{
NL_PS_FUNC(CPSBrownianForce_CPSBrownianForce)
setIntensity(intensity);
if (CParticleSystem::getSerializeIdentifierFlag()) _Name = std::string("BrownianForce");
}
///==========================================================
bool CPSBrownianForce::isIntegrable(void) const
{
NL_PS_FUNC(CPSBrownianForce_isIntegrable)
return _IntensityScheme == NULL;
}
///==========================================================
void CPSBrownianForce::integrate(float date, CPSLocated *src,
uint32 startIndex,
uint32 numObjects,
NLMISC::CVector *destPos,
NLMISC::CVector *destSpeed,
bool accumulate,
uint posStride, uint speedStride
) const
{
NL_PS_FUNC(CPSBrownianForce_integrate)
/// MASS DIFFERENT FROM 1 IS NOT SUPPORTED
float deltaT;
if (!destPos && !destSpeed) return;
CPSLocated::TPSAttribParametricInfo::const_iterator it = src->_PInfo.begin() + startIndex,
endIt = src->_PInfo.begin() + startIndex + numObjects;
float lookUpFactor = _ParametricFactor * BFNumPredefinedPos;
float speedFactor = _ParametricFactor * _K;
if (!accumulate) // compute coords from initial condition, and applying this force
{
if (destPos && !destSpeed) // fills dest pos only
{
while (it != endIt)
{
float deltaT = date - it->Date;
uint index = (uint) (lookUpFactor * deltaT) & (BFNumPredefinedPos - 1);
destPos->set(it->Pos.x + deltaT * it->Speed.x + _K * PrecomputedPos[index].x,
it->Pos.y + deltaT * it->Speed.y + _K * PrecomputedPos[index].y,
it->Pos.z + deltaT * it->Speed.z + _K * PrecomputedPos[index].z );
++it;
NEXT_POS;
}
}
else if (!destPos && destSpeed) // fills dest speed only
{
while (it != endIt)
{
deltaT = date - it->Date;
uint index = (uint) (lookUpFactor * deltaT) & (BFNumPredefinedPos - 1);
destSpeed->x = it->Speed.x + speedFactor * PrecomputedSpeed[index].x;
destSpeed->y = it->Speed.y + speedFactor * PrecomputedSpeed[index].y;
destSpeed->z = it->Speed.z + speedFactor * PrecomputedSpeed[index].z;
++it;
NEXT_SPEED;
}
}
else // fills both speed and pos
{
while (it != endIt)
{
deltaT = date - it->Date;
uint index = (uint) (lookUpFactor * deltaT) & (BFNumPredefinedPos - 1);
destPos->x = it->Pos.x + deltaT * it->Speed.x + _K * PrecomputedPos[index].x;
destPos->y = it->Pos.y + deltaT * it->Speed.y + _K * PrecomputedPos[index].y;
destPos->z = it->Pos.z + deltaT * it->Speed.z + _K * PrecomputedPos[index].z;
destSpeed->x = it->Speed.x + speedFactor * PrecomputedSpeed[index].x;
destSpeed->y = it->Speed.y + speedFactor * PrecomputedSpeed[index].y;
destSpeed->z = it->Speed.z + speedFactor * PrecomputedSpeed[index].z;
++it;
NEXT_POS;
NEXT_SPEED;
}
}
}
else // accumulate datas
{
if (destPos && !destSpeed) // fills dest pos only
{
while (it != endIt)
{
deltaT = date - it->Date;
uint index = (uint) (lookUpFactor * deltaT) & (BFNumPredefinedPos - 1);
destPos->set(destPos->x + _K * PrecomputedPos[index].x,
destPos->y + _K * PrecomputedPos[index].y,
destPos->z + _K * PrecomputedPos[index].z);
++it;
NEXT_POS;
}
}
else if (!destPos && destSpeed) // fills dest speed only
{
while (it != endIt)
{
deltaT = date - it->Date;
uint index = (uint) (lookUpFactor * deltaT) & (BFNumPredefinedPos - 1);
destSpeed->set(destSpeed->x + speedFactor * PrecomputedSpeed[index].x,
destSpeed->y + speedFactor * PrecomputedSpeed[index].y,
destSpeed->z + speedFactor * PrecomputedSpeed[index].z);
++it;
NEXT_SPEED;
}
}
else // fills both speed and pos
{
while (it != endIt)
{
deltaT = date - it->Date;
uint index = (uint) (lookUpFactor * deltaT) & (BFNumPredefinedPos - 1);
destPos->set(destPos->x + _K * PrecomputedPos[index].x,
destPos->y + _K * PrecomputedPos[index].y,
destPos->z + _K * PrecomputedPos[index].z);
destSpeed->set(destSpeed->x + speedFactor * PrecomputedSpeed[index].x,
destSpeed->y + speedFactor * PrecomputedSpeed[index].y,
destSpeed->z + speedFactor * PrecomputedSpeed[index].z);
++it;
NEXT_POS;
NEXT_SPEED;
}
}
}
}
///==========================================================
void CPSBrownianForce::integrateSingle(float startDate, float deltaT, uint numStep,
const CPSLocated *src, uint32 indexInLocated,
NLMISC::CVector *destPos,
bool accumulate,
uint stride) const
{
NL_PS_FUNC(CPSBrownianForce_integrateSingle)
nlassert(src->isParametricMotionEnabled());
//nlassert(deltaT > 0);
nlassert(numStep > 0);
#ifdef NL_DEBUG
NLMISC::CVector *endPos = (NLMISC::CVector *) ( (uint8 *) destPos + stride * numStep);
#endif
const CPSLocated::CParametricInfo &pi = src->_PInfo[indexInLocated];
const NLMISC::CVector &startPos = pi.Pos;
if (numStep != 0)
{
float lookUpFactor = _ParametricFactor * BFPredefinedNumInterp;
if (!accumulate)
{
/// fill start of datas (particle didn't exist at that time, so we fill by the start position)
destPos = FillBufUsingSubdiv(startPos, pi.Date, startDate, deltaT, numStep, destPos, stride);
if (numStep != 0)
{
float currDate = startDate - pi.Date;
nlassert(currDate >= 0);
const NLMISC::CVector &startSpeed = pi.Speed;
do
{
#ifdef NL_DEBUG
nlassert(destPos < endPos);
#endif
uint index = (uint) (lookUpFactor * currDate) & (BFNumPredefinedPos - 1);
destPos->x = startPos.x + currDate * startSpeed.x + _K * PrecomputedPos[index].x;
destPos->y = startPos.y + currDate * startSpeed.y + _K * PrecomputedPos[index].y;
destPos->z = startPos.z + currDate * startSpeed.z + _K * PrecomputedPos[index].z;
currDate += deltaT;
destPos = (NLMISC::CVector *) ( (uint8 *) destPos + stride);
}
while (--numStep);
}
}
else
{
uint numToSkip = ScaleFloatGE(startDate, deltaT, pi.Date, numStep);
if (numToSkip < numStep)
{
numStep -= numToSkip;
float currDate = startDate + deltaT * numToSkip - pi.Date;
do
{
#ifdef NL_DEBUG
nlassert(destPos < endPos);
#endif
uint index = (uint) (lookUpFactor * currDate) & (BFNumPredefinedPos - 1);
destPos->x += _K * PrecomputedPos[index].x;
destPos->y += _K * PrecomputedPos[index].y;
destPos->z += _K * PrecomputedPos[index].z;
currDate += deltaT;
destPos = (NLMISC::CVector *) ( (uint8 *) destPos + stride);
}
while (--numStep);
}
}
}
}
///==========================================================
void CPSBrownianForce::initPrecalc()
{
NL_PS_FUNC(CPSBrownianForce_initPrecalc)
/// create the pos table
nlassert(BFNumPredefinedPos % BFPredefinedNumInterp == 0);
NLMISC::CVector p0(0, 0, 0), p1;
const uint numStep = BFNumPredefinedPos / BFPredefinedNumInterp;
NLMISC::CVector *dest = PrecomputedPos;
uint k, l;
for (k = 0; k < numStep; ++k)
{
if (k != numStep - 1)
{
p1.set(2.f * (NLMISC::frand(1.f) - 0.5f),
2.f * (NLMISC::frand(1.f) - 0.5f),
2.f * (NLMISC::frand(1.f) - 0.5f));
}
else
{
p1.set(0, 0, 0);
}
float lambda = 0.f;
float lambdaStep = 1.f / BFPredefinedNumInterp;
for (l = 0; l < BFPredefinedNumInterp; ++l)
{
*dest++ = lambda * p1 + (1.f - lambda) * p0;
lambda += lambdaStep;
}
p0 = p1;
}
// now, filter the table several time to get something more smooth
for (k = 0; k < (BFPredefinedNumInterp << 2) ; ++k)
{
for (l = 1; l < (BFNumPredefinedPos - 1); ++l)
{
PrecomputedPos[l] = 0.5f * (PrecomputedPos[l - 1] + PrecomputedPos[l + 1]);
}
}
// compute the table of speeds, by using on a step of 1.s
for (l = 1; l < (BFNumPredefinedPos - 1); ++l)
{
PrecomputedSpeed[l] = 0.5f * (PrecomputedPos[l + 1] - PrecomputedPos[l - 1]);
}
PrecomputedSpeed[BFNumPredefinedPos - 1] = NLMISC::CVector::Null;
// compute the table of impulsion
for (k = 0; k < BFNumPrecomputedImpulsions; ++k)
{
static double divRand = (2.f / RAND_MAX);
PrecomputedImpulsions[k].set( (float) (rand() * divRand - 1),
(float) (rand() * divRand - 1),
(float) (rand() * divRand - 1)
);
}
}
///==========================================================
void CPSBrownianForce::setIntensity(float value)
{
NL_PS_FUNC(CPSBrownianForce_setIntensity)
if (_IntensityScheme)
{
CPSForceIntensity::setIntensity(value);
renewIntegrable(); // integrable again
}
else
{
CPSForceIntensity::setIntensity(value);
}
}
///==========================================================
void CPSBrownianForce::setIntensityScheme(CPSAttribMaker<float> *scheme)
{
NL_PS_FUNC(CPSBrownianForce_setIntensityScheme)
if (!_IntensityScheme)
{
cancelIntegrable(); // not integrable anymore
}
CPSForceIntensity::setIntensityScheme(scheme);
}
///==========================================================
void CPSBrownianForce::computeForces(CPSLocated &target)
{
NL_PS_FUNC(CPSBrownianForce_computeForces)
nlassert(CParticleSystem::InsideSimLoop);
// perform the operation on each target
for (uint32 k = 0; k < _Owner->getSize(); ++k)
{
float intensity = _IntensityScheme ? _IntensityScheme->get(_Owner, k) : _K;
uint32 size = target.getSize();
if (!size) continue;
TPSAttribVector::iterator it2 = target.getSpeed().begin(), it2End;
/// start at a random position in the precomp impulsion tab
uint startPos = (uint) ::rand() % BFNumPrecomputedImpulsions;
NLMISC::CVector *imp = PrecomputedImpulsions + startPos;
if (target.getMassScheme())
{
float intensityXtime = intensity * CParticleSystem::EllapsedTime;
TPSAttribFloat::const_iterator invMassIt = target.getInvMass().begin();
do
{
uint toProcess = std::min((uint) (BFNumPrecomputedImpulsions - startPos), (uint) size);
it2End = it2 + toProcess;
do
{
float factor = intensityXtime * *invMassIt;
it2->set(it2->x + factor * imp->x,
it2->y + factor * imp->y,
it2->z + factor * imp->x);
++invMassIt;
++imp;
++it2;
}
while (it2 != it2End);
startPos = 0;
imp = PrecomputedImpulsions;
size -= toProcess;
}
while (size != 0);
}
else
{
do
{
uint toProcess = std::min((uint) (BFNumPrecomputedImpulsions - startPos) , (uint) size);
it2End = it2 + toProcess;
float factor = intensity * CParticleSystem::EllapsedTime / target.getInitialMass();
do
{
it2->set(it2->x + factor * imp->x,
it2->y + factor * imp->y,
it2->z + factor * imp->x);
++imp;
++it2;
}
while (it2 != it2End);
startPos = 0;
imp = PrecomputedImpulsions;
size -= toProcess;
}
while (size != 0);
}
}
}
///=======================================================================
void CPSBrownianForce::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSBrownianForce_serial)
sint ver = f.serialVersion(3);
if (ver <= 2)
{
uint8 dummy;
f.serial(dummy); // old data in version 2 not used anymore
CPSForce::serial(f);
f.serial(dummy); // old data in version 2 not used anymore
serialForceIntensity(f);
if (f.isReading())
{
registerToTargets();
}
}
if (ver >= 2)
{
CPSForceIntensityHelper::serial(f);
f.serial(_ParametricFactor);
}
}
} // NL3D