godot-third-person-basic-scene/maps/shaders/khanat_sky.gdshader

138 lines
6 KiB
Text

// NOTE: Shader automatically converted from Godot Engine 4.0.alpha5's PhysicalSkyMaterial.
// And then augmented with a few tweaks
shader_type sky;
uniform float rayleigh : hint_range(0, 64) = 2.0;
uniform vec4 rayleigh_color : hint_color = vec4(0.3, 0.405, 0.6, 1.0);
uniform float mie : hint_range(0, 1) = 0.005;
uniform float mie_eccentricity : hint_range(-1, 1) = 0.8;
uniform vec4 mie_color : hint_color = vec4(0.69, 0.729, 0.812, 1.0);
uniform float turbidity : hint_range(0, 1000) = 10.0;
uniform float sun_disk_scale : hint_range(0, 360) = 1.0;
uniform vec4 ground_color : hint_color = vec4(0.1, 0.07, 0.034, 1.0);
uniform float exposure : hint_range(0, 128) = 0.1;
uniform float dither_strength : hint_range(0, 10) = 1.0;
uniform sampler2D night_sky : hint_black_albedo;
uniform sampler2D samayun : hint_albedo;
uniform float samayun_arc = 25 ;
uniform vec3 samayun_position = vec3( 0.0, 0.5, 0.0 );
uniform sampler2D zabr : hint_albedo;
uniform float zabr_arc = 12 ;
uniform vec3 zabr_position = vec3( 0.0, 0.7, 0.0 );
const vec3 UP = vec3( 0.0, 1.0, 0.0 );
// Sun constants
const float SUN_ENERGY = 1000.0;
// Optical length at zenith for molecules.
const float rayleigh_zenith_size = 8.4e3;
const float mie_zenith_size = 1.25e3;
float henyey_greenstein(float cos_theta, float g) {
const float k = 0.0795774715459;
return k * (1.0 - g * g) / (pow(1.0 + g * g - 2.0 * g * cos_theta, 1.5));
}
// From: https://www.shadertoy.com/view/4sfGzS credit to iq
float hash(vec3 p) {
p = fract( p * 0.3183099 + 0.1 );
p *= 17.0;
return fract(p.x * p.y * p.z * (p.x + p.y + p.z));
}
void sky() {
if (LIGHT0_ENABLED) {
float zenith_angle = clamp( dot(UP, normalize(LIGHT0_DIRECTION)), -1.0, 1.0 );
float sun_energy = max(0.0, 1.0 - exp(-((PI * 0.5) - acos(zenith_angle)))) * SUN_ENERGY * LIGHT0_ENERGY;
float sun_fade = 1.0 - clamp(1.0 - exp(LIGHT0_DIRECTION.y), 0.0, 1.0);
// Rayleigh coefficients.
float rayleigh_coefficient = rayleigh - ( 1.0 * ( 1.0 - sun_fade ) );
vec3 rayleigh_beta = rayleigh_coefficient * rayleigh_color.rgb * 0.0001;
// mie coefficients from Preetham
vec3 mie_beta = turbidity * mie * mie_color.rgb * 0.000434;
// Optical length.
float zenith = acos(max(0.0, dot(UP, EYEDIR)));
float optical_mass = 1.0 / (cos(zenith) + 0.15 * pow(93.885 - degrees(zenith), -1.253));
float rayleigh_scatter = rayleigh_zenith_size * optical_mass;
float mie_scatter = mie_zenith_size * optical_mass;
// Light extinction based on thickness of atmosphere.
vec3 extinction = exp(-(rayleigh_beta * rayleigh_scatter + mie_beta * mie_scatter));
// In scattering.
float cos_theta = dot(EYEDIR, normalize(LIGHT0_DIRECTION));
float rayleigh_phase = (3.0 / (16.0 * PI)) * (1.0 + pow(cos_theta * 0.5 + 0.5, 2.0));
vec3 betaRTheta = rayleigh_beta * rayleigh_phase;
float mie_phase = henyey_greenstein(cos_theta, mie_eccentricity);
vec3 betaMTheta = mie_beta * mie_phase;
vec3 Lin = pow(sun_energy * ((betaRTheta + betaMTheta) / (rayleigh_beta + mie_beta)) * (1.0 - extinction), vec3(1.5));
// Hack from https://github.com/mrdoob/three.js/blob/master/examples/jsm/objects/Sky.js
Lin *= mix(vec3(1.0), pow(sun_energy * ((betaRTheta + betaMTheta) / (rayleigh_beta + mie_beta)) * extinction, vec3(0.5)), clamp(pow(1.0 - zenith_angle, 5.0), 0.0, 1.0));
// Hack in the ground color.
Lin *= mix(ground_color.rgb, vec3(1.0), smoothstep(-0.1, 0.1, dot(UP, EYEDIR)));
// Solar disk and out-scattering.
float sunAngularDiameterCos = cos(LIGHT0_SIZE * sun_disk_scale);
float sunAngularDiameterCos2 = cos(LIGHT0_SIZE * sun_disk_scale*0.5);
float sundisk = smoothstep(sunAngularDiameterCos, sunAngularDiameterCos2, cos_theta);
vec3 L0 = (sun_energy * 1900.0 * extinction) * sundisk * LIGHT0_COLOR;
L0 += texture(night_sky, SKY_COORDS).xyz * extinction;
vec3 color = (Lin + L0) * 0.04;
COLOR = pow(color, vec3(1.0 / (1.2 + (1.2 * sun_fade))));
COLOR *= exposure;
// Make optional, eliminates banding.
COLOR += (hash(EYEDIR * 1741.9782) * 0.08 - 0.04) * 0.016 * dither_strength;
} else {
// There is no sun, so display night_sky and nothing else.
COLOR = texture(night_sky, SKY_COORDS).xyz * 0.04;
COLOR *= exposure;
}
// Calculate respective scales of celestial objects
float samayun_scale = radians(samayun_arc) ;
float zabr_scale = radians(zabr_arc) ;
// Adding Samayun
if (length(EYEDIR - normalize(samayun_position)) < samayun_scale / 2.0) { // we are in the area of the sky where samayun is placed
//We define a local plane tangent to the skydome at samayun_position
//We work with everything normalized
vec3 n1 = normalize(cross(samayun_position,vec3(0.0,1.0,0.0))) ;
vec3 n2 = normalize(cross(samayun_position,n1)) ;
//We project EYEDIR on this plane with an approximate correction for projection
float x = dot(EYEDIR,n1) * 0.89 ;
float y = dot(EYEDIR,n2) * 0.89 ;
// If zabr is nearer at this place, do nothing
if (length(EYEDIR - normalize(zabr_position)) < zabr_scale / 2.0 && length(zabr_position) < length(samayun_position)){
} else { // // Add samayun to the sky
COLOR += texture(samayun, vec2(x,y) / samayun_scale + vec2(0.5)).rgb * texture(samayun, vec2(x,y) / samayun_scale + vec2(0.5)).a;
}
}
// Adding zabr
if (length(EYEDIR - normalize(zabr_position)) < zabr_scale / 2.0) { // we are in the area of the sky where zabr is placed
//We define a local plane tangent to the skydome at zabr_position
//We work with everything normalized
vec3 z_n1 = normalize(cross(zabr_position,vec3(0.0,1.0,0.0))) ;
vec3 z_n2 = normalize(cross(zabr_position,z_n1)) ;
//We project EYEDIR on this plane with an approximate correction for projection
float z_x = dot(EYEDIR,z_n1) * 0.89 ;
float z_y = dot(EYEDIR,z_n2) * 0.89 ;
// If samayun is nearer at this place, do nothing
if (length(EYEDIR - normalize(samayun_position)) < samayun_scale / 2.0 && length(samayun_position) < length(zabr_position)){
} else { // Add zabr to the sky
COLOR += texture(zabr, vec2(z_x,z_y) / zabr_scale + vec2(0.5)).rgb * texture(zabr, vec2(z_x,z_y) / zabr_scale + vec2(0.5)).a;
}
}
}